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Assignment 3 - Group 84

Exercise 1
a) Based on the data alone, it cannot be concretely said if there is a linear correlation on
not. However, if the data is closely observed it can be seen that as the opening bid values
increase, the final bids also increase, suggesting that there could be a positive linear
correlation. Calculating the r value or the correlation coefficient, which can be done using the
program R as follows:
> opening_bid <- c(1500, 500, 500, 400, 300)
> winning_bid <- c(650, 175, 125, 275, 125)
> correlation_coefficient <- cor(opening_bid, winning_bid)
> print(correlation_coefficient)
0.9468915

As the correlation coefficient; r = 0.947 is very close to 1 a very strong positive correlation
can be suggested.

b) The intercept and slope of the linear regression line can be calculated with the formula:

where b1 is the slope and b0 is the y-intercept.
● to calculate b1 the r value is already calculated while sy and sx the standard

deviation of y and x needs to be calculated. using R: >
standard_deviation_opening_bid <- sd(opening_bid)
> print(standard_deviation_opening_bid)
487.8524
> standard_deviation_winning_bid<- sd(winning_bid)
> print(standard_deviation_winning_bid)
221.0769

● so now the values can be substitute to calculate b1:

● Now the values of b0 can be also computed which requires the means of x and y
which can again be calculated using R:
> mean_opening_bid <- mean(opening_bid )
> print(mean_opening_bid)
640



> mean_winning_bid <- mean(winning_bid)
> print(mean_winning_bid)
270

● So, b0 can be now calculated as follows:

So, the intercept is -4.56 while the slope is 0.429 as demonstrated.

c) Use the regression line from b) to predict winning bid if the opening bid were 1000.
Derive the residual values for Opening bids equal to 300 and 1500. Comment

The regression line derived previously as can be used to
calculate the residual values for opening bids equal 300 and 1500 as follows:

Residual for 300:
= 125 - (-4.56 + 0.429(300))
= 0.86

Residual for 1500:
= 650 - (-4.56 + 0.429(1500))
= 11.06

In both these cases, it can be seen that the value is positive, suggesting that the model
underestimates the actual predictions. The residual value for 300 is quite small while the
residual value for 1500 is much more significant suggesting that the model deviates from
true values as the value gets higher.

Exercise 2
a)
Since the number of breaks of a given fiber should be binomially distributed within five trials,
we can use the given formula in the assignment sheet, which is X ∼ Bin(n, p), EX=np. And so
If X ∼ Bin(n, p) (with unknown p) is observed, the success probability p is estimated by
ˆp = X/n. Hereby, X is the number of successes(which means in this problem “breaking of a
fiber”) in all the trials. In this problem X is the total number of breaks. To find out the X, we
have to find the total broken fibers for each break(0, 1, 2, 3, 4, 5) in 5 trials. The frequency
row gives us the amount of fibers that are broken. Breaks on the other hand show us how
many times in 5 trials the given amount of fibers was broken. For instance if we look at the
second column, it means that 1 time in 5 trials 69 fibers were broken. So X is the product of
the total number of breaks with the corresponding frequencies, since we have 6 different
amounts of breaks in 5 trials for 280 fibers, we are calculating the total breaks. Hereby, n is
the total number of trials.
So since each of the 280(157+69+35+17+1+1) fibers is tested 5 times, total trials will be 280
x 5 = 1400.



Thus our estimated probability p is 0.142 under the binomial distribution.

b)

To test the observed distribution with the binomial distribution using a chi-squared test we first
have to determine the hypotheses.

Null hypothesis: The frequency distribution of fiber breaks follows a binomial distribution
with a constant probability p, which makes all fibers to have the same strength.
Alternative hypothesis: The frequency distribution of fiber breaks does not follow a
binomial distribution with a constant probability p, which means fibers can have different
strength.

Pooling the last three cells:

Breaks 0 1 2 3-5

Frequency 157 69 35 19

We are looking here for a goodness-of-fit so df is in this case k-1=4-1=3.
If we fill all the values into R;

> breaks_non_pooled <- c(0, 1, 2)
> frequencies <- c(157, 69, 35, 17, 1, 1)



> trials_n <- 5
> estimated_p <- 0.1421429
> total_trials <- 280
>
> E_non_pooled <- dbinom(breaks_non_pooled, trials_n,
estimated_p) * total_trials
> E_pooled <- (1 - sum(dbinom(breaks_non_pooled, trials_n,
estimated_p))) * total_trials
>
> observed_freq<- c(frequencies[1:3], sum(frequencies[4:6]))
> expected_freq <- c(E_non_pooled, E_pooled)
>
> chi_squared_test <- chisq.test(observed_freq, p =
expected_freq / total_trials) #here we divide E by total
trials to make it probability, since in R chisq.test requires
probabilities in place of
> chi_squared_test

Chi-squared test for given probabilities

data: observed_freq
X-squared = 44.149, df = 3, p-value = 1.403e-09

From table 4 of the book with the df=3 and significance level 0.05, the critical value is 7.815.
To conclude the result; the p-value is 1.403e-09 which is less than significance level 0.05
and also the critical value is 7.815 which is less than our chi square test result( X-squared >
X-squared k-1, alpha). Thus the null hypothesis can be rejected and therefore, the frequency
distribution of fiber breaks does not follow a binomial distribution with a constant probability
p, which means fibers can have different strength.



Exercise 3
a)
plot(mortality$teen, mortality$mort, main = "Teenage Birth Rate vs. Infant Mortality Rate",

xlab = "Teenage Birth Rate (per 1000)", ylab = "Infant Mortality Rate (per 1000)")
linear_model <- lm(mort ~ teen, data = mortality)
abline(linear_model, col = "red")
summary(linear_model)

Given the scatterplot above, it can be concluded that as the teenage birth rate increases
there is a positive tendency with the infant mortality rate increasing as well. In other words,
when the mother of the child is older, it is more likely that the child will live longer than if the
mother is younger.

b)
Residuals:

Min 1Q Median 3Q Max
-1.6429 -1.0348 -0.0184 0.6831 3.5902

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.52640 0.64930 11.592 3.03e-15 ***
teen 0.22509 0.05052 4.456 5.32e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.14 on 46 degrees of freedom
Multiple R-squared: 0.3015, Adjusted R-squared: 0.2863
F-statistic: 19.85 on 1 and 46 DF, p-value: 5.317e-05



The p-value = 5.32e-05 here shows the relationship between independent and dependent
variables. Since null hypothesis stands for no relationship between teen and mort so like
Betha = 0 which also stands for slope coefficient. For alternative H; there is a relationship,
meaning slope coefficient is not zero. Thus since the found p-value is much less than the
0.01(significance level) we reject the null hypothesis. Which also means that it is almost not
possible to randomly observe 0.22509 as slope coefficient .
Dependent variable (mort ): this is what we are trying to predict/estimate.
Independent variable (teen ): with using this we are trying to explain the dependent
variable.
Intercept, 7.52640 : constant term for this case.
Slope, 0.22509 : coefficient of the independent variable
Filling these values into the formula of simple linear regression gives as estimated mort,
which also gives the wanted regression equation.

linear_model <- lm(mort ~ teen, data = mortality)
summary(linear_model)
conf_interval <- confint(linear_model, level = 0.98)
conf_interval
residual_std_error <- summary(linear_model)$sigma
error_variance <- residual_std_error^2

1 % 99 %
(Intercept) 5.961478 9.0913266
teen 0.103335 0.3468416

These are the outputs we get for a 98% confidence interval. These are the lower and upper
bounds for each coefficient. In this context, this means that we are 98% sure that the true
value of the intercept and the true value of the slope coefficient falls within their respective
bounds.

Now, going back to the results from part a, we had that the positive estimate for the slope
coefficient was 0.22509 which suggests that there is a positive relationship between teenage
birth rate (teen) and child mortality rate (mort). Moreover, the fact that the CI for the slope
coefficient doesn’t include 0 supports the idea that there is a significant relationship.

estimate error variance -> Residual standard error: 1.14

determination of the coefficient R-squared → Multiple R-squared: 0.3015

c)
The formula to get the answers based on the known data is the following:

Predicted Mortality Rate = 7.52640(Intercept) + 0.22509(slope) x 10(teen)



We get 9.77729 which is a prediction that for every 1000 births, the rate would be around
9.78.

d)
residuals <- residuals(linear_model)
plot(mortality$teen, residuals, main = "Scatterplot of Predictor against Residuals",

xlab = "Teenage Birth Rate (per 1000)", ylab = "Residuals")
abline(h = 0, col = "red")
qqnorm(residuals, main = "QQ-Plot of Residuals")
qqline(residuals, col = "red")

As we can see in the plot above, it looks like we are talking about a normally distributed plot.
However, there are a few deviations on the left-tail. They are above the red line which means
that it is a heavy tail. Since this happens, the residuals might not be normally distributed.
However, even though there are a few extreme values to the left side, the rest is quite well
fitted altogether which might suggest that the rest are just some outliers and might not have
a huge impact overall.

If that’s the case, we can safely say that the results obtained from part b are reliable.
Also, something to note here is that linear regression models are generally robust, meaning
they can handle some degree of deviation from the assumptions and especially if the sample
size is sufficiently large, which is our case.

Exercise 4
a)



What we want to investigate is whether Andy’s friends are equally strong, which also means
that his friends(which in this case have different proportions) have the same amount of
(same proportion of ) strength in the game(some characteristics)?

Null Hypothesis: Andy’s friends are equally strong opponents.
Alternative hypothesis: Andy’s friends are not equally strong opponents.

Since we are dealing with categorical data and so contingency tables, here we used the
Chi-Squared test to test for homogeneity.

From R:

> data_matrix <- matrix(c(179, 47, 57, 283,
+ 96, 17, 36, 149,
+ 52, 13, 18, 83,
+ 39, 15, 15, 69,
+ 84, 37, 39, 160,
+ 450, 129, 165, 744),
+ nrow = 6, ncol = 4, byrow = TRUE)
> rownames(data_matrix) <- c("Bob", "Cecilia", "David",
"Emma", "Freddy", "Total")
> colnames(data_matrix) <- c("Won", "Lost", "Draw", "Total")
> print(data_matrix)

Won Lost Draw Total
Bob 179 47 57 283
Cecilia 96 17 36 149
David 52 13 18 83
Emma 39 15 15 69
Freddy 84 37 39 160
Total 450 129 165 744
> # chi-squared test with excluding totals, since R doesn't
need total values for chi-test.
> data_matrix_without_total <- data_matrix[1:5, 1:3]
> chi_test_result <- chisq.test(data_matrix_without_total)
> print(chi_test_result)

Pearson's Chi-squared test

data: data_matrix_without_total
X-squared = 10.931, df = 8, p-value = 0.2056

As the results we got chi-squared as 10.931 and p-value as 0.2056. We can approach our
conclusion in two ways.

1. P-value: p-value from the test is greater than significance level. Which is 0.2056 >
0.05. So in this case we don't have enough evidence to reject the null hypothesis and
to conclude that Andy’s friends are not equally strong opponents.

2. Chi-squared critical value: To find the critical value in R:

> alpha = 0.05
> df <- chi_test$parameter
> critical_value <- qchisq(1 - alpha, df)
> print(critical_value)



[1] 15.50731

Since this critical value(15.50731) is greater than our chi-squared value(10.931)
(chi-squared test is right tailed), we cannot reject the null hypothesis.

b)
Our null hypothesis stated that Andy's friends are equally strong when it comes to the game.
Hereby we calculated the contribution of each cell with the squared residuals from our
chi-squared test. A residual is the difference between the observed and expected values for
a cell. Larger residuals demonstrate more contribution within the cell to the result of
chi-square test. With the table it can be seen that how much each game’s result differed
from what would be really expected if the null hypothesis(that if all friends were equally
strong) were true and how they would impact the result from Chi-Squared statistics.

> contributions <- chi_test_result$residuals^2 #The
squared residuals are to prevent negative values and get
larger inconsistencies.
> print(contributions)

Won Lost Draw
Bob 0.35823588 0.08720234 0.529009720
Cecilia 0.38351808 3.02119217 0.264367041
David 0.06442415 0.13447451 0.009010529
Emma 0.17908836 0.77058531 0.005976667
Freddy 1.68619355 3.08960990 0.348416422

If we look under the ‘Lost’, the highest contributions which are shown with squared residuals,
are 3.02119217 against Cecelia and 3.08960990 against Freddy. If all friends were equally
strong there wouldn't be this huge contribution difference between the other friends’
contribution values. This also can be monitored in ‘Won’, since Freddy’s won contribution
(1.68619355) is unexpectedly higher, which indicates deviation from expected values. So
3.02119217, 3.08960990 and 1.68619355 would be the most contributing to the chi-test
statistics under the null hypothesis. However, even though there are significant differences
seen from the contributions, it is still not sufficient to conclude that there is indeed a
difference between Andy’s friends' strengths.

c)

If the null hypothesis were true, this would mean that Andy’s all friends has the same strength
which also would mean that Andy would have the same probability of winning against each of his friends.
So we can assume p as probability or proportion of Andy winning a game with his total winnings divided
by the amount of games played. To find the expected wins( E), hereby we took n as 160.
From the R:

> total_wins <- data_matrix[nrow(data_matrix), 1]
> total_games <- data_matrix[nrow(data_matrix), ncol(data_matrix)]
> p_probability_winning <- total_wins / total_games
> n_games_against_freddy <- 160
> E_expected_wins_freddy <- p_probability_winning *
n_games_against_freddy
> print(E_expected_wins_freddy)



[1] 96.77419

So around 97 games Andy expected to win against Freddy under the assumption of equal
strength. Thus, if we compare this result with the result from the table (84 wins against
Freddy), under the assumption of the null hypothesis Andy would win more games (since 97
> 84).


