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Assignment 1 - Group 84

Exercise 1

a)

The probability that a random person, which does the test, gets a positive result can be
shown like P(Positive). Since the accuracy of the test is 95% correct and so 5% considered
as wrong test results. The following table demonstrates the probabilities.

Positive Tested

Negative Tested

Has Cancer

95%
(true positive)

5%
(false negative)

Has No Cancer

5%
(false positive)

95%
(true negative)

To find out P( Positive) | we used the Total Law of Probability. Which give us:
(Considering the probabilities as independent events, since it stated as that in context).

Probability of True Positive: P ( Cancer ) X P ( Positive | Cancer ) = 0.004 x 0.95 = 0.0038
Probability of False Positive: P ( No Cancer ) X P ( Positive | No Cancer ) = 0.996 x 0.05 = 0.0498

Total Probability of a Positive Test Result: 0.0038 + 0.0498 = 0.0536
rounded : 0.054

In this question we calculated the probability that a random person gets a positive result from
the cancer diagnostic test. However, in exercise 1.3 asked the probability that a person has
cancer, given that they have received a positive test result. Both questions should have
different approaches to achieve the wanted probability result.

b)
Since they asked the probability of having cancer given a positive test result , Bayes’
Theorem would be used.

Bayes' Theorem
P ( Positive | Cancer) X P( Cancer)
P ( Positive)

P( Cancer| Positive) =

Total Law of Probability
P ( Positive) =P( Positive | Cancer) X P( Cancer) + P( Positive | No Cancer) X P ( No Cancer)

P( Positive | Cancer) = 95% or 0.95 Since the accuracy of the results are 95% correct.

P( Cancer) = 4% or 0.004 Since 4% of the population has cancer.
P( Positive) = As we calculated in exercise 1a, 0.0536



Filling the values in the theorem:

. 0.95x 0.004
P( Cancer| Positive) = —————— = 0.070895522 or 0.071 .
0.0536

c)

The events “person has cancer” and “positive test” are dependent, since the occurrence of
one affects the probability of the other. So it is true to say that if a person has cancer (Event
A), it significantly increases the likelihood of a positive test result (Event B). Moreover, if the
result of the test is positive for a person, the probability of having cancer would increase.
This dependency can be seen in the calculations using conditional probabilities and Bayes'
Theorem.

The received risk of having cancer rises significantly because of the positive test result. It
moves from the general prevalence rate (0.4% from the exercise) to a much higher
probability (approximately 7.09% as calculated in Exercise 1.3). The probability of a positive
test result is higher if the person has cancer. This illustrates how new information provided
by test findings allows us to update and improve our assessment of the health of a person.

Exercise 2
a) A sample space is a set of all possible events that cannot be broken down further. In
this case, the sample space consists of all the possible timings the individual can wait
for the bus. As per the information provided, a bus arrives every 15 minutes. Hence
the sample space consists of minutes 0-14. Perhaps the sample space S is:

S =1{0,1,2,3,4,5,6,7,8,9,10,11,12, 13,14}

As the question does not state any restriction on the time an individual can arrive, the
probability that the individual can arrive at a certain time t can be described using the
probability P(t). t being a value of minute from the sample space S, the probability that the
individual reaches the stop at a time t can be as follows:

P(t) = —

b) Now, the question states that if the previous bus will be missed by 4 or less minutes,
the waiting time is more than 11 minutes and then the individual hurries and catches
the bus (so waiting time will be 0 in this case). Whereas, if the previous bus is missed
by more than 5 minutes, that is the waiting time is 10 minutes or less, then the
individual continues at their normal pace. A random variable X models the waiting
time at the bus stop. So the probability an individual will need to wait at least 5
minutes at the bus stop or P(X = 5) is the sum of probability of x=5, x=6, x=7, x=8,
x=9 and x=10. So:
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<X)= —
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P(5 < X) = 0.4

c) Xis arandom variable demonstrating waiting time, from the sample space, an
individual waits at the bus stop from 0 to 10 minutes. So, the random variable X
waiting at the bus stop consists of time 0-10, so the expectation of X is as follows:

E(X) =) [t* P(t)

BX) = (35 #0) 1 (35 * 1) + (5

2..... (% «10)

15 15
11
E(X) = 3.67

As it can be seen above using the expectation formula when substituting t with values from 1
to 10. The expectation is 3.67minutes.

d) The variance is as follows:

Var(X] = S [t* « P(X)] - B(X)*

10

1 .

Var(X] = [t = - 3.672
0

1
Var(X] = - * (07 +1%....10'%) — 3.672

Var(X] =12.2

Similarly to the mean, the variance of the X (waiting time at the bus stop) can be found by
substituting t with values from 1-10 into the variance formula. Which leads to variance being
12.2 rounded to one decimal place.



e) According to the central limit theorem a large number of independent randomly
distributed variables will approach a normal distribution regardless of the distribution
of the sample. In this case the sample of the current distribution is not a normal
distribution. However, assuming that the waiting times are independent of each other
160 times a year the distribution of your average waiting time across the whole year
can be estimated to be normal on the basis of the central limit theorem.

Exercise 3

a)

chi-squared:

qqnorm(sample_chi2, main = "Chi-squared(2) QQ Plot")
qqline(sample_chi2, col = "red")

hist(sample_chi2, main = "Histogram - Chi-squared(2)")
boxplot(sample_chi2, main = "Boxplot - Chi-squared(2)")

t-distribution:

qqnorm(sample_t, main = "t(4) QQ Plot")
qgline(sample_t, col = "red")
hist(sample_t, main = "Histogram - t(4)")
boxplot(sample_t, main = "Boxplot - t(4)")

Chi-squared|2) QQ Plot Histogram - Chi-squared(2) Boxplot - Chi-squared(2)
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It is very visible the difference between the first set of plots and the second one.

On the one hand, we have the first set. This is clearly not in normal distribution because
even though some of the points in the middle of the QQ-Plot are on the line, its tails are very
heavy which means that there are big outliers that deform the whole normal distribution



structure. If we move onto the histogram, there is a right-skewed design which means that
most of the data is on the left side. Finally, in the boxplot, we find that the median is very low
compared to the whole range of random variables.

In the second set(t-distribution) there is normal distribution because in the QQ-plot the data
is aligned with the diagonal and the tails are quite light despite having an outlier here and
there. In the histogram it’s also visible that although not perfect, it has a solid normal
distribution with most of the data around the mean. Finally, in the boxplot, the median is also
very centered which normally is an indicator of having a well distributed sample.

As a final comment, the reason why | say that the tails are light is because there is nearly no
point that doesn’t follow the tendency of normal distribution. However, since these points in
the sample are very far apart from the rest, it means that they have a meaningful impact
individually to the data.

b)

(i)

Arbitrary outcome is smaller than 3: 0.5

Arbitrary outcome is bigger than -0.5: 0.6914625 (rounded: 0.691)
Arbitrary outcome is between -1 and 2: 0.2426384 (rounded: 0.243)

Relevant R-code

p_smaller_than_3 <- pnorm(3, mean =0, sd = 1)

p_bigger than_neg 05 <- 1 - pnorm(-0.5, mean =0, sd = 1)

p_between neg 1 and 2 <- pnorm(2, mean =0, sd = 1) - pnorm(-1, mean =0, sd = 1)

(ii)

Arbitrary outcome is smaller than 3: 0.5

Arbitrary outcome is bigger than -0.5: 0.6914625 (rounded: 0.691)
Arbitrary outcome is between -1 and 2: 0.2857874 (rounded: 0.286)
95% of the outcomes are smaller: 6.289707 (rounded: 6.290)

Relevant R-code

p_smaller_than_3 <- pnorm(3, mean = 3, sd = 2)

p_bigger_than_neg_ 05 <- 1 - pnorm(-0.5, mean = 3, sd = 2)

p_between_neg 1 _and_2 <- pnorm(2, mean = 3, sd = 2) - pnorm(-1, mean = 3, sd = 2)
value_95 percentile = gnorm(0.95, mean=3, sd=2)

Z-score is 1.645 for the 95th percentile from the Z-table(from book).

So to transform Z-score into the value of the distribution:

X=0Z+u

X=2 1645+3=6.29

Since the value from R (which is 6.289707) is more precise, it's then true to say that R
calculates (with the function ‘gnorm’) the result based on the continuous normal distribution
rather than a discrete set of tabulated values (such as the Z-score table from the book).

(iii)



Sample mean: -0.9132614 (rounded: -0.9)
Sample standard deviation: 5.114544 (rounded: 5.1)

Relevant R-code

standard_normal_sample = rnorm(1000, mean =0, sd = 1)
transformed_sample = standard_normal_sample * 5 - 1
transformed_sample_mean = mean(transformed_sample)
transformed_sample_sd = sd(transformed_sample)
print(transformed_sample_mean)
print(transformed_sample_sd)

As can be seen from the results, mean -0.9 and standard deviation 5.1 are close to the
theoretical values, which are -1 and 5.

(iv)

The size of the sample affects the accuracy of the probability estimations. The probabilities
estimated from a larger sample, in our case demonstrated by 100,000 observations, are
closer to the theoretical probabilities. For instance, the result of P(Z < 3) for 100,000
observations was approximately 0.99861, which is really close to 0.9987(theoretical
probability). On the other hand, 100 observations give 1, a clear deviation likely due to
sampling variability. Here we can also see the law of large numbers, which states that if
sample size grows, the average of the whole population gets closer to its mean.

sample_100 <- rnorm(100, mean =0, sd = 1)
sample_100000 <- rnorm(100000, mean =0, sd = 1)
calculate_probabilities <- function(sample) {
p_smaller_than_3 <- mean(sample < 3)
p_bigger_than_neg_05 <- mean(sample > -0.5)
p_between neg 1 and_ 2 <- mean(sample > -1 & sample < 2)
return(list(P_smaller_than_3 = p_smaller_than_3,
P_bigger_than_neg_0.5 = p_bigger_than_neg_05,
P_between_neg_1_and_neg_2 = p_between_neg_1_and_2))
}
P_100 <- calculate_probabilities(sample_100)
P_100000 <- calculate_probabilities(sample_100000)

Results

> print(P_100)

$P_smaller_than_3[1] 1
$P_bigger_than_neg 0.5[1] 0.65
$P_between _neg 1 _and neg_2[1]0.83

> print(P_100000)
$P_smaller_than_3 [1] 0.99861
$P_bigger_than_neg_0.5[1] 0.68968
$P_between neg 1 and_neg 2[1] 0.81741
c)
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When comparing chart 1.1 and 2.1 it can be noticed that chart 1.1 is more symmetrical than
2.1 as 2.1 is more right skewed. Chart 1.1 also has a smaller dispersion compared to chart
2.1. If the shape of the histogram is compared to the bell curve of a normal distribution, chart
1.1 has more of a bell curve shape compared to 2.1. However it could be that with more data
2.1 can be seen as a bell curve as it could very likely be that only the left half of the bell
curve is visible in chart 2.1. This could be because 2.1 is a sample extracted from a larger
population that follows a normal distribution. However, based on the current shape of the
chart 2.1 it does not follow the bell curve shape of a normal distribution strictly.

Comparing chart 1.2 and 2.2 is insightful to understand the spread of the data. It must be
noticed that chart 1.2 has a lot more peculiar data points compared to 2.2 this is due to the
greater presence of outliers in chart 1.2 compared to 2.2 whose data is more within the
certain range. From the box plot itself it is visible that chart 2.2’s data is more spread within



the range of values on the y axis compared to chart 1.2 whose majority of the data is
concentrated within 200-250.

The QQ plots of both datasets visualized in chart 1.3 and 2.3 are very similar, in both of
them, the data points seem to deviate from the red linear line at the beginning and end as
visible. However, the middle portion a of the data seemed to align with the line of distribution
in both cases. Perhaps, on a more critical note, chart 1.3 seemed to be more aligned to the
liner line than chart 2.3.

In conclusion, it can be derived that for dataset 1 about diabetes “Normality cannot be
excluded” for sure. The histogram’s resemblance to a bell curve, the spread of the data
demonstrated in the box plot and the alignment of the data with the line in the QQ plot all
support this as explained. However, the situation of dataset 2 with the newborn weights is
more complex, as explained the histogram partially follows the bell curve shape of a normal
distribution indicating that the dataset could be a sample of a larger population that shows a
clear normal distribution. However, the provided chart the spread of data demonstrated
through the box plot and QQ plots alone does not support the standards for a normal
distribution as it is very right skewed to be normally distributed. Perhaps, the resemblance
and qualitative analysis is not strong enough to solidify that the data might be part of a
normal distribution. Hence, for the sake of choosing from the options provided and based on
what is shown in the charts dataset 2 about newborn weights is “Obviously not from a
normal distribution”. However, with the provision of more data it could be normal
distributed.

Relevant code:
e Chart1.1:
> diabetes <- read.csv("diabetes.csv")
> hist(diabetes$chol,main="Individuals’ total cholesterol values",xlab="Cholesterol
Values",ylab="Frequency")

e Chart1.2
> diabetes <- read.csv("diabetes.csv")
> boxplot(diabetes$chol, main=" Individuals’ total cholesterol values", ylab="Cholesterol values")

e Chart1.3
> diabetes <- read.csv("diabetes.csv")
> qgnorm(diabetes$chol, main = "Individuals' Cholesterol Values")
> qgline(diabetes$chol, col = 2)

e Chart2.1
> vlbw <- read.csv("vibw.csv")
> hist(vibw$bwt,main="Baby birth weights",xlab="weights",ylab="Frequency")

e Chart2.2
> vlbw <- read.csv("vibw.csv")
> boxplot(viow$bwt, main="Baby birth weights", ylab="weights")

e Chart2.3
> vlbw <- read.csv("vibw.csv")



> qgnorm(vibw$bwt, main="Baby birth weights")
> qqline(vibw$bwt, col = 2)

Exercise 4

a)

To make the plot:

plot(1:n_trials, trial_means, type ="I"
Mean of Absolute Differences")

, col = "blue", xlab = "Number of Trials", ylab = "Sample

To draw the red dashed line:

abline(h = expected_value, col = "red")
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b)

results <- diffdice(num_simulations)
approximate_probability_of_event <- mean(results == 3)

Results:
cat("Approximate Expectation:", approximate_expectation, "\n")

cat("Approximate Probability of Absolute Difference = 3:",
approximate_probability_of_event, "\n")



> cat("Approximate Expectation:", approximate_expectation, "\n")

Approximate Expectation: 1.9421

> cat("Approximate Probability of Absolute Difference = 3:", approximate_probabil
ity_of_event, "\n")

Approximate Probability of Absolute Difference = 3: 0.1675

c)
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R-code for the histograms
par(mfrow = c(2, 2))
sample_sizes <- list(120, 130, 140, 240)
for (n in sample_sizes) {
means <- replicate(10000, mean(diffdice(n)))
hist(means,
main = paste("Sample size =", n),
xlab = "Mean Absolute Difference",

breaks = 20,

col = "blue",

freq = FALSE)#bc in the slides density is used
}
d)

The resulting histograms of the mean of absolute differences get more accurate and start to
approximate the bell curve of a typical normal distribution as we increase the number of trials



inside each replicate (n) and increase the size of the samples. This is explained by the
Central Limit Theorem, which states that regardless of the initial distribution of the
population, as sample size increases, the means of the sample distribution will resemble a
standard normal distribution. So as the sample size increases, each of our four plots
illustrates this impact, becoming more symmetric and narrowly peaked around the mean,
which is what the CLT indicates.



