[84]:

[85]:

assignment_ 1
April 10, 2024

1 Assignment 1

Assignment 1: Optimization

Goal: Get familiar with gradient-based and derivative-free optimization by implementing these
methods and applying them to a given function.

In this assignment we are going to learn about gradient-based (GD) optimization methods and
derivative-free optimization (DFO) methods. The goal is to implement these methods (one
from each group) and analyze their behavior. Importantly, we aim at noticing differences between
these two groups of methods.

Here, we are interested in minimizing the following function:

f(x) = 2% + 222 — 0.3 cos (3mx,) — 0.4 cos (4mzy) + 0.7

in the domain x = (z,2,) € [—100,100] (i.e., z, € [—100,100], z, € [—100,100]).

In this assignemnt, you are asked to implement: 1. The gradient-descent algorithm. 2. A chosen
derivative-free algorithm. You are free to choose a method.

After implementing both methods, please run experiments and compare both methods. Please find
a more detailed description below.

1.1 1. Understanding the objective

Please run the code below and visualize the objective function. Please try to understand the
objective function, what is the optimum (you can do it by inspecting the plot).

If any code line is unclear to you, please read on that in numpy or matplotlib docs.

import matplotlib.pyplot as plt
import numpy as np

PLEASE DO NOT REMOVE!
The objective function.
def f(x):

return (
x[:, 0] *x 2
+ 2 % x[:, 1] **x 2

[86]:

[87]:

[88]:

[88]:

- 0.3 * np.cos(3.0 * np.pi * x[:, 0])
- 0.4 * np.cos(4.0 * np.pi * x[:, 1])
+ 0.7

PLEASE DO NOT REMOVE!
Calculating the objective for wvisualization.
def calculate_f(x1, x2):
fx =[]
for i in range(len(x1)):
for j in range(len(x2)):
f_x.append(f (np.asarray([[x1[il, x2[j111)))

return np.asarray(f_x).reshape(len(xl), len(x2))

PLEASE DO NOT REMOVE!

Define coordinates

x1 = np.linspace(-100.0, 100.0, 400)
x2 = np.linspace(-100.0, 100.0, 400)

Calculate the objective
f_x = calculate_f(x1, x2).reshape(len(xl), len(x2))

PLEASE DO NOT REMOVE!

Plot the objective

plt.contourf(xl, x2, f_x, 100, cmap="hot")
plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x10£82ac90>

100 - 29700
75 4 - 26400
50 | - 23100

- 19800

25
16500

D_
13200

_25 -

9900

_5(] -

6600

=75 7 3300

—100 - 0

-100 -75 -—-50 25 0 25 50 75

1.2 2. The gradient-descent algorithm

First, you are asked to implement the gradient descent (GD) algorithm. Please take a look at the
class below and fill in the missing parts.

NOTE: Please pay attention to the inputs and outputs of each function.

NOTE: To implement the GD algorithm, we need a gradient with respect to x of the given function.
Please calculate it on a paper and provide the solution below. Then, implement it in an appropriate
function that will be further passed to the GD class.

Question 1 (0-1pt): What is the gradient of the function f(x)? Please fill below both the
mathematical expression and within the code.

Answer:
Vi f(x) =2z, +0.97sin(37z,) (0.15 pt)
Vi, f(x) =4z, + 1.6msin(4mz,) (0.15 pt)
[89]: | # =========
GRADING:
0

0.5pt - if properly implemented and commented well
Implement the gradient for the constidered f(z).
def grad(x):

grad_x1 = 2 * x[:, 0] + 0.9 * np.pi * np.sin(3 * np.pi * x[:, 0]) #partialy
~derivative of the obj func respect to zl

grad_x2 = 4 * x[:, 1] + 1.6 * np.pi * np.sin(4 * np.pi * x[:, 1]) # partial,
wderivative of the obj func respect to z2

grad = np.column_stack((grad_x1, grad_x2)) #putting the partial derivatives,
<into a 2D gradient array. first column respect to zl, second is for z2.

return grad

[90] : | # =========
GRADING:
#0
0.5pt <f properly implemented and commented well

Implement the gradient descent (GD) optimization algorithm.
It 1s equivalent to implementing the step function.
class GradientDescent(object):
def __init__(self, grad, step_size=0.1):
self.grad = grad
self.step_size = step_size

def step(self, x_old):

gradient = self.grad(x_old) #calculating the gradient with at the z_oldy,
wpoint.

#here gradient provides the direction of the optimizer,

#step size 1s to determine how far it should move from xz_old point and

#since we are looking for the steepest descent we eliminate self.
»step_stize * gradient from z_old

x_new = x_old - self.step_size * gradient
return x_new

[91]: # PLEASE DO NOT REMOVE!
An auziliary function for plotting.

def plot_optimization_process(ax, optimizer, title):
Plot the objective function

[92]:

ax.contourf(xl, x2, f_x, 100, cmap="hot")

Init the solution
x = np.asarray([[90.0, -90.0]1])
x_opt = x
Run the optimization algorithm
for i in range(num_epochs):
X = optimizer.step(x)
X_opt = np.concatenate((x_opt, x), 0)

ax.plot(x_opt[:, 0], x_optl:, 1], linewidth=3.0)
ax.set_title(title)

PLEASE DO NOT REMOVE!

This piece of code serves for the analysts.

Running the GD algorithm with different step sizes

num_epochs = 20 # the number of epochs

[0.01, 0.05, 0.1, 0.25, 0.4, 0.5] # the step sizes

step_sizes

plotting the convergence of the GD
fig gd, axs = plt.subplots(l, len(step_sizes), figsize=(15, 2))
fig_gd.tight_layout ()

for i in range(len(step_sizes)):
take the step stize
step_size = step_sizes[i]
init the GD
gd = GradientDescent(grad, step_size=step_size)
plot the convergence
plot_optimization_process(
axs[i], optimizer=gd, title="Step size " + str(gd.step_size)

Step size 0.01 Step size 0.05 Step size 0.1 Step size 0.25 Step size 0.4 Step size 0.5

50 50 50 50 50

o 0 o o o

=50 =50 =50 =50 =50

-100 -100 -100 -100 -100 -100
-100 -50 0 50 100 =100 -50 O 50 100 -100 =50 O 50 100 =100 -50 O 50 100 -100 =50 O 50 100 =100 -50 O 50 100

Question 2 (0-0.5pt): Please analyze the plots above and comment on the behavior of the
gradient-descent for different values of the step size. What happens in the small and large step
sizes and what is the optimum step size?

Answer: For a small step size, more iterations are required to reach the target point, or the
minimum, compared to other step sizes. As can be seen from the visualizations, because it proceeds
with small steps, the optimizer has terminated without reaching the target point. However, with

a large step, due to the step size, there may be deviations from the target point or an inability to
precisely land on it. As can be observed from the graphs, the most optimal step size is between 0.1
and 0.25. Because within the given iterations(20 in this case), this step size has led the optimizer
to the minimum point.

Question 3 (0-0.5pt): How can we improve the convergence when the step size equals 0.017
What about when the step size equals 0.57

Answer: - For step size 0.01, increasing iterations could be a solution. But there is a possiblity
that it can miss the point because of the iterations. So in order to improve the convergence a
learning rate schedule can be used. Also there can be a momentum implemantation that helps the
optimizer to navigate the landscape more smoothly.

o For the step size 0.5, decreasing iterations could be the solution. But again since we decreasing
the iterations and the stepsize is too big, there is also a possibility of missing the minimum
point. To prevent overshooting the minimum point, the step size can be proportionally
reduced based on the rate of increase in the loss function value.

1.3 3. The derivative-free optimization

In the second part of this assignment, you are asked to implement a derivative-free optimziation
(DFO) algorithm. Please notice that you are free to choose any DFO method you wish. Moreover,
you are encouraged to be as imaginative as possible! Do you have an idea for a new method or
combine multiple methods? Great!

Question 4 (0-0.5-1-1.5-2-2.5-3pt): Please provide a description (a pseudocode) of your DFO
method here.

NOTE (grading): Please keep in mind: start simple, make sure your approach works. You are
encouraged to use your creativity and develop more complex approaches that will influence the
grading. TAs will also check whether the pseudocode is correct.

Answer:
Note: The questions is not specifying the type of pseudocode, so i did in my way
DFO Algorithm Pseudocode:

Input: - obj_fun: A function that computes the value for minimization/maximization - step_ size:
The size of exploration in each dimension - mode: Either ‘min’ for minimization or ‘max’ for
maximization, according to the user preferences - bounds: this will determine the bounds for the
points so the points for the optimizer will betwen the bounds

class DFO Initialization: 1. Initialize the algorithm with obj_ fun, step_ size, and mode 2. Create
an empty list best_ solution_ history to keep track of the progress and store the best solutions 3.
Create an empty list stuck_points to store the points when the optimizer gets stuck

min_or_max(self, x_new, x_best) method: - If the chosen mode is ‘min’, return true if
obj_fun(x_new) < obj fun(x_best). - Else return true if obj fun(x_new) > obj_fun(x_best),
which is for ‘max’.

step(x__old) method: 1. Set x_new as a copy of x_old to have independent copy of the coordinates
2. Set best_ value as the result of obj_ fun at x_old

)

3. For i from 0 to dimensionality of the problem (in this case 2D): For each direction in set {-1,

1}:

Create a step vector with zero values for 2D, [[0.0, 0.0]]

Set step_size * direction (-1 for neg, 1 for pos) to the i-th dimension of the step vector.
[0, i], O stands for row. i is for column. each column is for a dimension.

Add the step vector to x_old to get a candidate point

Check whether the new point is in between the bounds.

Calculate candidate_ value with the obj_ fun at the candidate coordinate
If candidate__value is better than best_value (based on mode):

— Update best_ value with candidate_value
— Update x_new with the candidate point

. After exploring all directions and dimensions between the bounds: If there is no significant

difference between last 5 steps and current point and the difference is below threshold:

Print a message to inform about the stuck point

Record the current step number in stuck_ points

Generate random noise to escape the area within the range [-step_size, step_ size] for
each dimension

Add the noise to x_new

Check whether the x new is in between bounds

. Append x_new to best_ solution__history

. Repeat the step method until the termination criteria are met (like a set number of iterations

or convergence threshold)

Output: - Information text that informs the user about the stuck point. - Mode type, step size,
last point’s coordinate and its obj function value. - Visualization of the optimization process with
epochs, x(for each step) and o(stuck point).

Numpy functions that i used:

np.copy: To create independent copies of arrays.

np.zeros: For initializing zero-filled arrays.

np.max: To find the maximum value in an array, used in the escape mechanism.

np.abs: To calculate absolute values.

np.clip: To ensure values remain within specified bounds.

np.random.uniform: For generating random noise within a specified range, used in the escape
mechanism.

np.vstack: convert 3D to 2D.

Visualization:

To have a clear visualization of the optimization process: i changed the bounds(bounds[0][0],
bounds[0][1]) so y and x-axes become 0.6. I also wanted to show the process of optimizer to find
min or max so i added for steps x, and for stuck points o. For the other not important implemen-
tations(implemantations that help the iteration and the effciency of the algorithm Visualization) i
made comments.

=========
GRADING: 0-0.5-1-1.5-2pt

#0

0.5pt the code works but it is very messy and unclear

1.0pt the code works but it is messy and badly commented

1.5pt the code works but tt <s hard to follow in some places
2.0pt the code works and it is fully understandable
=== == ===

Implement a derivative-free optimization (DFO) algorithm.

REMARK: during the init, you are supposed to pass the obj_fun and other,
~objects that are necessary in your method.

class DFO(object):
def __init__(self, obj_fun, step_size, bounds, mode='min'):
self.obj_fun = obj_fun
self.step_size = step_size
self .bounds = bounds
self.best_solution_history = []1 # Storing the best solution of eachy
~steps
self .mode = mode # Depends on user preferences tts either 'min'y
sminimization or 'maxz' mazimization
self.stuck_points = [] # Stores the stucked points

def min_or_max(self, x_new, x_best):
if self.mode == 'min': # minimization problem
return x_new < x_best
else: # if not 'min' then 'maxz', mazimization
return x_new > x_best

def step(self, x_old):

#Initialized with default values
x_new = np.copy(x_old)
best_value = self.obj_fun(x_old)

#coordinate descent approach
for i in range(2): # iterates over the two dimention
for direction in [-1, 1]: # Ezplore both neg and pos directions
step = np.zeros((1, 2)) # gives us [[0. 0.]] since its for 2D
step[0, i] = direction * self.step_size #exzploring bothy
~directions negative and positive
candidate = x_old + step

candidate = np.clip(candidate, [self.bounds[0][0], self.
~bounds [1] [0]], [self.bounds[0][1], self.bounds[1][1]]) #keeping the,
wcandidate between the bounds

candidate_value = self.obj_fun(candidate)

if self.min_or_max(candidate_value, best_value):
best_value = candidate_value
Xx_new = candidate

If optimizer stuck at some point
if len(self.best_solution_history) > 5:
previous_point = self.best_solution_history[-5] # taking last 5,
wpoints
changes = np.max(np.abs(x_new - previous_point)) # Calculating the,
—absolute value of the difference

if changes < le-6: # le-6 is the threshold

#If the last 5 solution s not considerably changed, means its,
»stuck

print("The optimizer seems to be stuck. Applying noise to
—~escape local extremum...")

self.stuck_points.append(len(self.best_solution_history))
~#best_solution_history ts later used to visualize stuck points on the,
< landscape

#Applying noise method

noise = np.random.uniform(-self.step_size, self.step_size,
~size=x_old.shape) #randomly assign a coordinate within the range,
~—-step_size-step_size

X_new += noise

x_new = np.clip(x_new, [self.bounds[0][0], self.bounds[1][0]],,
< [self .bounds[0] [1], self.bounds[1][1]1]) #keeping the new point between the,
~bounds.

Updating the history

self .best_solution_history.append(x_new) #storing = _new and now inside,
wbest_solution_history they are 3D.

#print (self.best_solution_history)

return x_new

[112]: # PLEASE DO NOT REMOVE!
def plot_optimization_process(ax, optimizer, bounds, title):

x = np.linspace(bounds[0] [0], bounds[0][1], 400)
y = np.linspace(bounds[1] [0], bounds[1][1], 400)
Z = calculate_f(x, y).reshape(len(x), len(y))

ax.contourf (x, y, Z, 100, cmap='hot')
ax.set_title(title)

Plot the path of the optimizer
if len(optimizer.best_solution_history) > O:
#since z_new in best_solution_history <s 3D, making them array and 2D,
~for next operations
best_solutions = np.vstack(optimizer.best_solution_history) #3D to 2D

ax.plot(best_solutions[:, 0], best_solutions([:, 1], 'r--', marker='x',,
-markeredgecolor='b')

Stuck points with green color w shape o on the graph
if optimizer.stuck_points:
stuck_solutions = best_solutions[optimizer.stuck_points]
ax.plot(stuck_solutions[:, 0], stuck_solutions[:, 1], 'o',
—~markerfacecolor="'none', markeredgecolor='g', markersize=10)

Running the DFO algorithm with different step sizes
num_epochs = 30 # the number of epochs (you may change it!)
step_sizes [0.01, 0.05, 0.1, 0.25, 0.4, 0.5] # the step sizes

PLEASE FILL IN

Here all hyperparameters go.

Please analyze at least one hyperparameter im a similar manner to the
step size in the GD algorithm.

bounds = [(-0.7, 0.7), (-0.7, 0.7)] # Bounds for each dimension

asking user to choose the mode of the optimizer
mode = input("Type 'min' to minimize or 'max' to maximize the objective,
ofunction: ") .strip().lower()
while mode not in ['min', 'max']:
print("Invalid mode. Please enter 'min' for minimization or 'max' for
omaximization.")
mode = input("Type 'min' to minimize or 'max' to maximize the objective
ofunction: ") .strip().lower()

plotting the convergence of the DFO

Please uncomment the two lines below, but please provide the number of azes,
o (replace HERE appriopriately)

fig_dfo, axs = plt.subplots(l, len(step_sizes), figsize=(15, 2))

fig _dfo.tight_layout()

the for-loop should go over (at least one) parameter(s) (replace HERE,
wappriopriately)

and uncomment the line below

for i, step_size in enumerate(step_sizes):

10

PLEASE FILL IN
dfo = DFO(f, step_size, bounds, mode=mode)

plot the convergence
x0 = np.random.uniform(bounds[0] [0], bounds[0][1], (1, 2)) # randomly,
~initialed point in 2D
for _ in range(num_epochs): # runs for num_epochs iteration
x0 = dfo.step(x0) # iterate through the running optimizer
final value = f(x0)

please change the title accordingly!

print (f"Mode: {mode.capitalize()}, Final coordinates for step size
o{step_size}: {x0}, Objective function value: {final_value}")

plot_optimization_process(axs[i], dfo, bounds, title=f"{mode.capitalize()},
~Step Size: {step_sizel}")

plt.show()

The optimizer seems to be stuck. Applying noise to escape local extremum.
The optimizer seems to be stuck. Applying noise to escape local extremum..
The optimizer seems to be stuck. Applying noise to escape local extremum.
Mode: Min, Final coordinates for step size 0.01: [[0.0003471 0.00462922]1],
Objective function value: [0.0007212]

The optimizer seems to be stuck. Applying noise to escape local extremum.
The optimizer seems to be stuck. Applying noise to escape local extremum..
The optimizer seems to be stuck. Applying noise to escape local extremum.
The optimizer seems to be stuck. Applying noise to escape local extremum..
Mode: Min, Final coordinates for step size 0.05: [[0.01899922 -0.00084254]],
Objective function value: [0.00518153]

The optimizer seems to be stuck. Applying noise to escape local extremum.
The optimizer seems to be stuck. Applying noise to escape local extremum.
The optimizer seems to be stuck. Applying noise to escape local extremum.
The optimizer seems to be stuck. Applying noise to escape local extremum..
Mode: Min, Final coordinates for step size 0.1: [[-0.04005786 -0.03245418]],
Objective function value: [0.05764524]

The optimizer seems to be stuck. Applying noise to escape local extremum..
The optimizer seems to be stuck. Applying noise to escape local extremum.
The optimizer seems to be stuck. Applying noise to escape local extremum..
The optimizer seems to be stuck. Applying noise to escape local extremum.
Mode: Min, Final coordinates for step size 0.25: [[-0.00868766 0.0567124 1],
Objective function value: [0.10486536]

The optimizer seems to be stuck. Applying noise to escape local extremum..
The optimizer seems to be stuck. Applying noise to escape local extremum.
The optimizer seems to be stuck. Applying noise to escape local extremum..
The optimizer seems to be stuck. Applying noise to escape local extremum..

11

The optimizer seems to be stuck. Applying noise to escape local extremum..
Mode: Min, Final coordinates for step size 0.4: [[-0.02480055 0.0595446 1],
Objective function value: [0.12271441]

The optimizer seems to be stuck. Applying noise to escape local extremum.
The optimizer seems to be stuck. Applying noise to escape local extremum.
The optimizer seems to be stuck. Applying noise to escape local extremum..
The optimizer seems to be stuck. Applying noise to escape local extremum.
Mode: Min, Final coordinates for step size 0.5: [[-0.12035743 -0.15492883]],
Objective function value: [0.78259029]

Min Step Size: 0.05

Min Step Size: 0.01
= =

- 1

Question 5 (0-0.5-1pt) Please comment on the behavior of your DFO algorithm. What are the
strong points? What are the (potential) weak points? During working on the algorithm, what kind
of problems did you encounter?

Answer:
How does it work?

This DFO algorithm designed to be user friendly and shows the process of optimization clearly.
The algorithm focused on 2D. I combined coordinate descent with other numpy functions to make
it more efficient. Normally, coordinate descent is for minimization problems but since question
asked to be creative, in this algorithm i focused on both minimizaiton and maximization prob-
lem. The model asks whether user want to maximize or minimize. Optimizer then explore both
negative and positive directions through iterating over each dimention to find the optimum coor-
dinate for objective function at a time, while keeping other coordinates fixed (this part is: for i in
range(2)..candidate=step+x_old). But there is a posibility in coordinate descent that optimizer
could get stuck at some point(e.g. local minima) if it does not find any optimum coordinate around
it. To solve this problem and make the algorithm working system more clear, i implemented a part
that adds the stuck point a noise that helps optimizer to escape stuck point. Noise is ramdomly
added with help of numpy between the values of (-)step size. And it is also shown on the pictures of
the landscape with green circles. The potantial optimal values that i found during trial-and-error of
algorithm for noise implementation threshold and iteration is 1e-6 and 30 respectively. Also there
are blue ‘x’ on the visual landscape for step size in each iteration, so to see how many distance the
optimizer took in each iteration with the different steps.

The strong points: - Its derivative-free so it can be used on the non-differentiable functions. -
The DFO method coordinate descent, simplifies the optimization process by breaking it down into
one-dimensional problems (iterating over the columns, which are the dimensions). - This algorithm
can be used both for minimization and maximization problems. - This has an escape mechanism
from local minima/maxima if it stuck, which helps to solve optimization problem efficiently.

The weak points: - With the complicated functions and high-dimensional problems i dont think
the algorithm would be efficient as e.g. gradient descent. Because with the high-dimensional prob-

12

lems, the computation cost increases. - The escape mechanism could not work efficiently on some
complex formulas which might have quite complex landspace. - There could be a efficiency problem
if the step size chosen wrongly which could lead optimizer to skip optimum point. - Could be slower
if the number of dimensions increases.

Problem that I encounter: Understanding how to navigate the coordinates systems and how
to manage multiple dimensions was quite challenging. In order to implement the system i had to
understand coorditane descent and how to combine it with the system i wanted. Also combining
algorithm with the visual parts of the code was challenging. And for the escape mechanishm, the
logic of this part (changes = np.max(np.abs(x_new - previous_ point))) took quite some time to
implement.

1.4 4. Final remarks: GD vs. DFO

Eventually, please answer the following last question that will allow you to conclude the assignment
draw conclusions.

Question 6 (0-0.5pt): What are differences between the two approaches?

Answer: - Gradient descent uses gradient information to determine the direction of the steepest
descent. For it to find the minimum, the objective function absolutely must be differentiable. On
the other hand, DFO does not require the objective function to be differentiable and does not use
derivatives to find the optimal solution. This can be advantageous at times when deriving some
objective functions is costly and nearly impossible.

e Gradient descent can be more efficient in finding a local minimum if the objective function is
smooth and the gradient can be calculated more accurately. Conversely, DFO can be more
costly and require more computation to find the optimum, as it uses a trial-and-error method.

o Gradient descent can be disadvantageous when its used with noisy, discontinuous, or non-
differentiable functions, but it is advantageous for smooth and continuous problems. Con-
versely, the applicability of DFO is multifaceted.

e Because of the trial-and-error nature of DFO, it may get stuck at suboptimal points, and an
escape method should be applied at this point. Gradient descent might not work effectively
in complex functions. Likewise, while gradient descent can quickly find local minima, it can
get stuck at some minima. DFO may be better in discovering the paths to the minimum as
it is more apt in exploring the landscape.

o Adjusting the step size in gradient descent can be more challenging compared to DFO.

e Gradient descent usually used for the continuous functions and the DFO used for discontin-
uous Functions.

Question 7 (0-0.5): Which of the is easier to apply? Why? In what situations? Which of them
is easier to implement in general?

Answer:

Gradient descent can be more easily applied in differentiable and smooth functions because the
gradient descent method has the ability to determine direction and can clearly show the direction
towards the function’s minimum. On the other hand, DFO can be applied when it is difficult or
impossible to take the derivative of the function. DFO relies directly on function evaluations and

13

does not require derivative information, such as in black box optimization problems. In terms of
ease of general application, gradient descent is simpler. Including mathematical operations like
taking derivatives and calculating gradients facilitates implementation and is effective. However,
for this, the function must be smoothly differentiable. As a result, which method can be more
easily applied depends on the type of function and the requirements of the problem.

14

	Assignment 1
	1. Understanding the objective
	2. The gradient-descent algorithm
	3. The derivative-free optimization
	4. Final remarks: GD vs. DFO

