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Software used

e Kaggle, an online source of data science in the form of models, datasets,
and in progress projects.

e Vscode, an interactive code editor for most digital languages.
e Python, a programming language with various applications.

e Matplotlib, a comprehensive python library for modeling and data visu-
alization in python.

e Pandas, a data analysis and manipulation tool in python.
e Seaborn, a library for python that uses matplotlib to plot graphs.
e Sci-kit learn, a machine learning library for python.
Use of AI tools Al was used to clarify some concepts that were more difficult

to understand such as the exact functioning of algorithms implemented in the
program.



1 Abstract

This project aims to take a comprehensive dataset on video games and its logis-
tical features and run it through different machine learning algorithms, namely
k-nearest neighbour, decision trees and logistic regression. The aim is to gener-
ate predictive models and compare the errors and biases between the algorithms
to find the best fit for the data when predicting the platform the video game
is found on. These predictions are based on other features of the game such as
developer, genre and ratings.

2 Introduction

Video games have gained massive popularity in society over the last few decades.
With technological and artistic advancement came demand for the various types
of games known today and normalized in every imaginable form. Originally re-
served for the rich with the means, games have become much more accessible
and startlingly varied, their uses expanded to its own culture, careers, and pro-
fessional sports community (Southern) [2017). Today, video games are accessible
to almost everyone by simply downloading the software on a mobile phone or
personal computer.

While more common as a pastime, the professional video games industry
have made significant steps and professional gaming events have gained pop-
ularity with its versatility and lucrative opportunities (Boyle, 2019)). For this
reason, the dataset that was chosen for this machine learning project is about
video games, for reference see: [Kaggle Dataset. The analysis of this project will
dig deeper into the topic by manipulating the dataset in different ways with the
help of various machine learning algorithms.

2.1 Machine Learning

With the fact that both are backed heavily by technological advancements, it
comes as no surprise that the popularity of video games also meant that machine
learning in the field of artificial intelligence also got more widespread(Cohen,
2021)). With these innovations, enormous amounts of data can be used to train
predictive algorithms and programs. For this purpose, three different machine
learning algorithms are implemented in relation to the previously mentioned
video games dataset in order to predict a target class. More specifically: k-
nearest neighbour, decision tree, and logistic regression algorithms. From the
video games dataset, 6 features are used to train the machine learning models.
From this, the class ‘platforms’ is predicted, to which belong Android, Linux,
Nintendo Switch, PC, SNES, iOS, and macOS.

2.2 Research Question

By implementing the three algorithms, k-nearest neighbour, decision tree, and
logistic regression, with regard to the chosen dataset, the goal is to find the


https://www.kaggle.com/datasets/cisautomotiveapi/large-car-dataset

best fitting model. More concretely, the following research question is asked:
To what extent can Logistic Regression, Decision tree and K-Nearest
Neighbour models accurately classify the ”platform” label of a video
game based on several game features?

3 Dataset and Preparation

The contribution of video games to the entertainment software industry and
economy is significant, with direct and complementary effects totalling up to
16.4 billion in 2004, and growing today (Crandall and Sidak, [2006). In the video
game industry, selling various games and reaching the right audience depends on
different factors such as its developers, publishers, genres and platforms as the
leading factors. In this project, game platforms are taken as the predicted label.
The focus is on examining the extent to which players play games across various
platforms, which is influenced by other features. The diversity of platforms can
depend on factors such as genre, developer, publisher, website, gameplay time,
and ratings. For instance, some individuals rate a game higher on the iOS plat-
form compared to when they play it on Linux. Moreover, certain publishers and
developers might produce games exclusively playable on PC. Taking all these
factors into account, a dataset has been created with 14 features, containing 6
different instances under the target ‘platform’ label.

The dataset has been prepared to increase the performance of the models.
The dataset initially contained over 100,000 rows and 27 columns, along with
categorical and numerical data. In preparation for the data for models, all the
empty rows were cleaned, and the spelling errors of the categorical values were
removed and corrected into new columns. Additionally, categorical columns
were organized by removing outliers. At this point, the leading classes in various
columns are selected, such as developer and publisher, and the rest are removed.

Similarly, the classes in the platform column that were barely mentioned
and could potentially lead to overfitting during the model training processes
were removed. To address instance imbalances in the platform column of the
dataset, oversampling and undersampling methods are used. To illustrate that,
noticing that iOS was represented more than other classes, the count of iOS
and appropriately increased the counts of other classes were reduced, thereby
making the data more organized and balanced.

The entropy and information-gain methods were used to understand how
suitable each column was for the predicted label (see figure 2). Entropy measures
the disorder and uncertainty in a dataset; a high entropy value indicates a high
diversity within the dataset. Conditional entropy refers to how disordered the
label is based on the value of a feature. Therefore, a high information-gain
value signifies that the feature (column) aligns well with the predicted label
(Brownleel, [2020).

For the predicted label 'Platform’, feature selection was conducted by choos-
ing the appropriate columns using the information gain formula. Information
gain was calculated iteratively for all columns using Python codes. At this
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stage, by treating each column as X, it was attempted to determine how suit-
able the column is for predicting the platform (e.g. IG(Platform—Column) =
H(Platform) - H(Platform—Column)). Ultimately, only 14 out of the 27 fea-
tures and a target were retained (Appendix A).

3.1 Data Splitting

The main focus of the models is to have a high accuracy score and to ensure
it generalizes well to unseen data. To increase the performance, different hy-
perparameters were selected. For the optimization of the hyperparameters, the
grid search technique was used, which evaluates the combination of parame-
ters through cross-validation. Additionally, in the process of cross-validation
training-data is split into subsets to validate the performance of the model.
Therefore, the dataset was split into training (80 %) to train the model on the
data and select the parameters, and testing (20 %) to test the performance
of the models. See appendix C for class distributions. In addition to that, for
some models the optimisation of the hyperparameters is processed on validation
set. In this case, data is split into training (60%), validation (20%) and test
set(20%).

4 Methods

4.1 k-nearest Neighbour

The k-Nearest Neighbors algorithm is a powerful technique in supervised ma-
chine learning used for classification and regression tasks. In the case of this
project, it is used for classification. The algorithm operates by finding the k
nearest data points to a new input, based on a chosen distance metric, and then



making predictions based on those neighbours (Zhang and Zhou, 2007). Dur-
ing training, kNN memorizes the entire training dataset without constructing
an explicit model. While kNN’s can be easy to implement and understand, its
prediction phase can be computationally intensive, especially for large datasets,
since it requires calculating distances to all training points (Abu Alfeilat et al.|
2019). Moreover, hyperparameters need to be set to optimize the performance
of this algorithm, systematic trial and error was used by increasing the neigh-
bors in increments of 3 until 21 neighbors. The metric is kept constant and the
weight is only tested for the first 5 trials.

e Neighbours: This hyperparameter sets the value of k; the number of
nearest neighbours that are taken into consideration. The choice of k is
critical as it can possibly make the model overfit, or on the opposite, mak-
ing it not accurate enough. In general, smaller k values tend to produce
more flexible, noise-sensitive models, while larger k values yield smoother
decision boundaries. The best fitting value for k turned out to be 15 in
the case of the video games dataset.

e Metric: This hyperparameter is used to determine how similar the data
point that needs to be classified is to its nearest neighbours. The metric
that proved to be most suitable is the euclidean distance, which is given
by the following formula:

\/(362 —x1)%2 + (y2 — y1)?

4.2 Decision Tree

The Decision Tree algorithm is an algorithm that consists of root nodes and
leaf nodes and can be used for both classification and regression tasks (Navada
et al.,[2011). The root nodes represent features, and the leaf nodes represent the
labels to be predicted, which in this case is ‘Platform’. The decision tree model
is based on the scikit-learn decision tree package which uses an optimized version
of the CART algorithm. This algorithm uses the Gini coefficient to determine
on which features the root should be split and further the corresponding leaves.

N
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The Gini-coeflicient is measuring purity across the dataset, a Gini-coeflicient
of 0 means all instances are part of one class while a value of 1 means there is
an equal distribution of instances between the classes. Furthermore, to make
the model fit a dataset better it can be tuned using hyperparameters. For
decision trees, the max depth, minimum sample split and the minimum sample
leaf is what was aimed to be optimized through the grid search algorithm (See
Appendix E).

e Max depth: This hyperparameter adjusts the depth of the search tree.
The higher the depth of the model there are more complex solutions it can



find, however, this often leads to overfitting. Having a depth that is too
low is also not beneficial as the model might not be able to fit the data
well. The values tuned for the parameter will therefore be between 5 and
15.

e Minimum sample leaf: This hyperparameter determines how many
instances are necessary for a leaf to split into sub-leaves again. Setting
this value very low means that it always splits thus risking overfitting.
Having it too high would mean the leaves barely split so the model can’t
learn as best as possible. The values for this hyperparameter will be
between 2 and 10.

e Minimum sample split: Similar to minimum sample leaf, the sample
split splits an internal node based on the value of the hyperparameters.
It follows similar principles as the sample leaf, however, it is applied at
a different time in the construction of the tree. The values for these
parameters are set between 1 and 3.

4.3 Logistic Regression

Logistic regression is a discriminative classifier model used for binary classifi-
cation tasks (Peng et al.) 2002a). It creates a linear combination of the input
features onto which the following logistic sigmoid function is applied; to generate
probabilities between 0 and 1 (Zaidi, 2022)).

f(f):H%

The probability generated can then be interpreted as the probability that
an instance belongs to a corresponding pre-defined class (Peng et al., 2002b)).
In this report, the model will be used to predict the target label 'Platform’ as
previously mentioned. The model is partially implemented using the sklearn
learn library whose Logistic regression’s hyperparameters include:

e Solver: Logistic regression models require optimization to find the coeffi-
cients to the model that minimize the loss the most. Solver is the choice of
optimization algorithm that is used to perform this task. Options include:
liblinear, newton-cg, Ibfgs etc.

e Penalty: Specifies the exact type of regularization penalty applied. Reg-
ularization is required to ensure that the model performs well without
overfitting, which includes a penalty term which can be of various types
such as: L1 Regularization, L2 Regularization and Elastic Net Regular-
ization.

A pragmatic approach of 5-fold cross validation strategy followed by system-
atic trial and error approach with the optimal hyperparameters was performed
on the validation set like in the K-nn model. The combination of hyperpa-
rameters with the highest accuracy without overfitting was chosen; Which are
penalty = ‘12’ and solver = ‘liblinear’.



5 Results

5.1 Baseline

The baseline is an important factor when writing out the results as it allows
comparison. The baseline that is used with regard to the video games dataset is
to assign the majority class to the target label, which results in approximately
0.38 accuracy for classification. From this, clear statements can be made when
analyzing outcomes for the three algorithms that were used.

5.2 Logistic Regression

Receiver Operating Characteristic to Multi-Class for Logistic Regression Confusion Matrix
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Figure 3: ROC Curve and Confusion Matrix for Logistic Regression

The confusion matrix, a vital tool for performance evaluation, depicts the
relationship between predicted values (x axis) and true label (y axis). There are
5 distinct classes under consideration with the following values corresponding to
class names: 0: Android, 1:Linux, 2: Nintendo, 3: PC, 4: iOS and 5: macOS.
The values on the diagonal of the confusion matix in figure 3, namely 84, 33,
73, 109, 256 and 3 represent the true positives or the correctly classified val-
ues. Conversely, off- diagonal values represent misclassifications. The notable
predominance of correct classification outweighs the misclassification indicating
the model’s high efficacy. The highest number of misclassifications (29) is for
class 3 (PC) for which model has erroneously predicted class 4 (i0S).

Meanwhile, each line on the ROC curve illustrates each class one through
five. The y-axis demonstrates the True positive rate while the x-axis demon-
strates the false positive rate. It is explicitly visible that the AUC is relatively
high for all curves ranging from 0.89 to 0.96. This indicates generally good
performance in classification. There is no class with AUC below 0.89 suggesting
there is no class that is particularly challenging to distinguish.

Further analysis along with the classification report reveals that classes such
as Android, Nintendo Switch, and iOS exhibit strong performance with high



precision and recall while classes like PC and macOS show slightly lower scores
suggesting room for improvement here, which could be a possible future im-
provement (refer appendix B).

Perhaps, the larger number of positive true classifications contribute to a
higher accuracy rate of 79 %. Compared to the baseline accuracy of 38 % the
logistic regression model performs much better with the accuracy of 79 %. This,
aligns with the positive classification report, ROC curve and confusion matrix
suggesting that the logistic regression model is truly a better fit in general and
in comparison to the baseline.

5.3 k-Nearest Neighbour

Predicting the ‘Platform’ from the video games dataset with the help of the k-
Nearest Neighbour algorithm resulted in a 0.78 accuracy, which is considerably
higher than the baseline. Therefore, the kNN positively impacts the classifica-
tion of the target label. This can also be seen by comparing the weights average
precision and recall values of 0.77 and 0.78 with the ones from the baseline,
which were 0.14 and 0.38 respectively.

The confusion matrix for kNN has the lowest amount of correct classified
instances along the diagonal. It has the highest misclassification of the class 4
(i0S) with 24 instances that incorrectly classified. For all other classes the mis-
classifications do not surpass 20 instances. The ROC curve has the classes range
between 0.87-0.96. The variance in between the curves is relatively low which
suggests the model isn’t a significant difference when the model is classifying
one class with another.
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Figure 4: ROC Curve and Confusion Matrix for k-Nearest Neighbour

5.4 Decision Tree

The confusion matrix for the decision tree has the values 84, 32, 75, 101, 256, 32
when comparing the true label against the predicted label for the features. These
values are very similar to values of the confusion matrix of logistic regression.
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Figure 5: ROC Curve and Confusion Matrix for Decision Tree

This suggests that both models are similarly good at predicting the correct
class from the dataset. The confusion matrix for the decision tree has better
prediction for the correct labels compared to the KNN model. The highest
amount of misclassifications is for the class Nintendo which has 16 instances
mislabelled as Linux it also has 16 instances mislabelled as PC.

The ROC curve lines range between 0.74-0.9. This is a relatively wide range
with some classes such as PC class being well predicted by the model while the
model is not so good at classifying instances from i0S. The ROC curve suggests
that the model is more inconsistent and not as reliable for each class.

The decision tree models an accuracy of 77.6 %, a precision score of 77 %
and a recall score of 78 %. Based solely on these metrics this model is the worst
performing, however, the difference between the measures of this model and
the KNN model is extremely minimal. It does perform worse than the logistic
regression model. Looking at the individual class metrics, the inconsistency
shown in the ROC curve is also true for the metrics. Looking at the precision
and recall scores, the class (10S) with the highest precision and recall is 0.84 and
0.91 respectively. The worst class (maxOS) has a precision 0.65 and a recall of
0.51. The data for this model shows that the model has high correct predictions
for certain classes but much lower for others. These fluctuations are not good for
the model as a stronger model should have more uniform classification scores.

6 FEvaluation and Conclusion

Notably, all the models have compelling results. To dive deeper, in terms of
accuracy, the logistic regression model emerges first as the most accurate with an
accuracy rate of 79 % followed by k-nearest neighbors model at 78 % and decision
tree with 77.6 %. Furthermore, each model outperforms the baseline model’s 38
% accuracy substantially. Hence, from accuracy the logistic regression models
perform the best.

To analyse precision, a boxplot comparing the precision scores of the tree



different models were created(refer appendix D). The plot illustrates logistic
regression with the highest median precision score of 0.8 along with the larger
IQR indicating a general reliable prediction. This is followed by decision tree
with a precision score of 0.75 and second better spread (IQR) and lastly the K-
nn model with a precison of 0.79 and comparitievly less spread (IQR). Hence, it
can be said that in terms of precision logistic regression is most precise followed
by decision tree and logistic regression. Importantly, the box plot shows the
spread of a classifier’s classification skill. The logistic regression has the highest
precision but has the largest spread meaning it is good at predicting certain
classes and significantly worse than others. In comparison to the KNN model
which performs slightly worse but has a lower variance in the precision this in
general being more evenly precise in it’s predictions.

Upon closer analysis of the model through confusion matrices and ROC plots,
it is evident that all three models exhibit a higher frequency of misclassifying
PCs compared to other classes, while iOS is inconsistently correctly classified
the most. The decision tree model’s highest misclassification is at 16 instances
which have true label PCs but are misclassified as iOS and Nintendo. Similarly,
logistic regression and k-nn demonstrate the same tendency by their highest
number of misclassifications 29 and 24 respectively being misclassifying PC as
iOS. Conversely, the most accurately predicted across all models iOS with K-nn
achieving 265 correct predictions, followed by the decision tree with 256 and
logistic regression with 258 correct predictions. Perhaps, the misclassification
of PC into iOS could be due to iOS being the majority or dominant class.

Based on the results and metrics it is hard to conclude which model is best
as one model has higher score for the metrics while having a larger variance
in prediction. Overall, these models could all be beneficial for specific tasks
regarding the dataset.

So, to conclude and answer the research question, the decision tree, K-nn,
and logistic regression model perform decently well in predicting the target label
"Platform” of the video games instances based on its features. All the models
demonstrate significantly higher accuracy than the baseline model’s accuracy of
38%. Perhaps, within the scope of this study, these models effectively address
the goal of with adequate creativity and thoroughness. Nevertheless, future
training and tuning the hyperparameters of the model to make them capable to
handle unique datasets and possibly datasets with more instances of PC could
test the true potential of the models and extending the findings of this report.
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7 Appendices
Appendix A

Features Feature Description

Game Name Name of the game

Website Game Website

Rating Rating rated by user

Playtime Hours needed to complete the game

Suggestion Counts

Users who suggested the game

Reviews Counts

Users who reviewed the game

Developers Game developers.
Publishers Game publishers.
esrb_rating ESRB ratings

added_status_yet

User that "not played" the game

added_status_beaten

User that "completed” the game

added_status_toplay

User that "to play”" the game

added_status_playing

User that "playing" the game

Main Genre

Genre of the games

Figure 6: Remaining Features
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Appendix B

Android
Linux

Ninentendo Switch

PC
i0S
macOS

accuracy
macro avg
weighted avg

Classification report

precision recall

0.9
0.8
0.91
0.69
0.8
0.71

0.8
0.8

Figure 7: Classification Report - logistic regression

13

0.8
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Appendix C

Training Data Class Distribution Test Data Class Distribution

Linux Linux

Android

Nintendo Switch Nintendo Switch

Figure 8: Training and Test Data Class Distribution
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Appendix D

Comparison of Precision between models
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Figure 9: Comparing the precision values between models
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Appendix E

Gridsearch: Decision Tree

Max depth Min sample split Min sample leaf Accuracy score
5 2 1 0.68
5 2 2 0.65
5 2 3 0.67
5 5 1 0.70
5 5 2 0.71
5 5 3 0.69
5 10 1 0.73
5 10 2 0.68
5 10 3 0.66
10 2 1 0.77
10 2 2 0.76
10 2 3 0.74
10 5 1 0.72
10 5 2 0.70
10 5 3 0.69
10 10 1 0.73
10 10 2 0.72
10 10 3 0.67
15 2 1 0.78
15 2 2 0.76
15 2 3 0.71
15 5 1 0.74
15 5 2 0.75
15 5 3 0.71
15 10 1 0.79
15 10 2 0.76
15 10 3 0.71

Note: The highest accuracy was not chosen because the model would have a higher chance of overfitting. Instead, the
value was chosen with the highest accuracy while taking into account which hyperparameters would lead to the least chance
of overfitting.

Figure 10: Gridsearch: Decision Trees
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