[31]:

assignment 2
April 22, 2024

1 Assignment 2

Assignment 2: Evolutionary Algorithms
Goal: Implement an Evolutionary Algorithm to solve continuous and discrete problems.

e Partl: continuous problem that is concerned with finding minimum of functions, in this case,
Sphere and Ackley functions.

e Part 2: discrete problem that is concerned with finding the solution for the N-queens problem.
Could be defined as minimization or maximization.

For both parts, this assignment requires implementation of the main components of an evolutionary
algorithm (i.e. crossover, mutation, parent selection, etc), and construction of your algorithm to
solve given problems.

Please answer the Questions and implement coding Tasks by filling PLEASE FILL IN sections.
Documentation of your code is also important. You can find the grading scheme in implementation
cells.

o Plagiarism is automatically checked and set to 0 points

e It is allowed to learn from external resources but copying is not allowed. If you use any
external resource, please cite them in the comments (e.g. # source: https://..... / (see
fitness_function))

Setup
Install Prerequisites (Part 1 and 2)

Run this cell to install the required libraries
%pip install numpy matplotlib scipy

Requirement already satisfied: numpy in
/Users/selma/anaconda3/envs/da/lib/python3.11/site-packages (1.25.2)
Requirement already satisfied: matplotlib in
/Users/selma/anaconda3/envs/da/1lib/python3.11/site-packages (3.8.2)
Requirement already satisfied: scipy in
/Users/selma/anaconda3/envs/da/lib/python3.11/site-packages (1.12.0)
Requirement already satisfied: contourpy>=1.0.1 in
/Users/selma/anaconda3/envs/da/lib/python3.11/site-packages (from matplotlib)
(1.0.5)

Requirement already satisfied: cycler>=0.10 in

/Users/selma/anaconda3/envs/da/lib/python3.11/site-packages (from matplotlib)
(0.11.0)

Requirement already satisfied: fonttools>=4.22.0 in
/Users/selma/anaconda3/envs/da/1ib/python3.11/site-packages (from matplotlib)
(4.25.0)

Requirement already satisfied: kiwisolver>=1.3.1 in
/Users/selma/anaconda3/envs/da/lib/python3.11/site-packages (from matplotlib)
(1.4.4)

Requirement already satisfied: packaging>=20.0 in
/Users/selma/anaconda3/envs/da/1lib/python3.11/site-packages (from matplotlib)
(23.0)

Requirement already satisfied: pillow>=8 in
/Users/selma/anaconda3/envs/da/lib/python3.11/site-packages (from matplotlib)
(9.4.0)

Requirement already satisfied: pyparsing>=2.3.1 in
/Users/selma/anaconda3/envs/da/lib/python3.11/site-packages (from matplotlib)
(3.0.9)

Requirement already satisfied: python-dateutil>=2.7 in
/Users/selma/anaconda3/envs/da/lib/python3.11/site-packages (from matplotlib)
(2.8.2)

Requirement already satisfied: six>=1.5 in
/Users/selma/anaconda3/envs/da/1lib/python3.11/site-packages (from python-
dateutil>=2.7->matplotlib) (1.16.0)

Note: you may need to restart the kernel to use updated packages.

Imports (Part 1 and 2)

[32]: | # Necessary libraries
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import ranksums

Set seed
np.random. seed (42)

Jupyter Notebook Magic (Part 1 and 2)

[33]: # Enables inline matplotib graphs
#/matplotlib inline

Comment the line above and uncomment the lines below to have interactive plots
WARN: may cause dependency issues

plt.ion()
plt.show()

[34] :

[35]:

[36]:

[37]:

1.1 Part 1: Continuous Optimization (5 points total)

In this part of the assignment you will implement an Evolutionary Algorithm to find the minimum
of the following functions: Sphere and Ackley functions.

Function Definitions & Plotting
Sphere Function

def Sphere(x):
"misource: https://www.sfu.ca/~ssurjano/spheref.html"""
dimension = x.shape[0]
return (1 / dimension) * (sum(x**2))

Ackley Function

def Ackley(x):
""source: https://www.sfu.ca/~ssurjano/ackley.html """

Ackley function parameters
a = 20

b =0.2

c =2 * np.pi

dimension = len(x)

Individual terms

terml = -a * np.exp(-b * np.sqrt(sum(x**2) / dimension))
term2 = -np.exp(sum(np.cos(c * xi) for xi in x) / dimension)
return terml + term2 + a + np.exp(l)

Plotting

Generate data for plotting

boundary_point, resolution = 5, 500

X = np.linspace(-boundary_point, boundary_point, resolution)
y = np.linspace(-boundary_point, boundary_point, resolution)

Generate the coordinate points
X, Y = np.meshgrid(x, y)
positions = np.column_stack([X.ravel(), Y.ravel()])

Get depths for all coordinate positions

z_unimodal = np.array(list(map(Sphere, positions))).reshape([resolution,,
~resolution])

z_multimodal = np.array(list(map(Ackley, positions))) .reshape([resolution,
~resolution])

Create 3D plot
fig = plt.figure(figsize=(15, 8))

https://www.sfu.ca/~ssurjano/spheref.html
https://www.sfu.ca/~ssurjano/ackley.html

titles = ["Sphere Function", "Ackley Function"]

for idx, z in enumerate([z_unimodal, z_multimodall):
Create sub-plot
ax = fig.add_subplot(121 + idx, projection="3d")

Plot the surface
ax.plot_surface(X, Y, z, cmap="viridis", edgecolor="k")

Set labels
ax.set_xlabel ("X1")
ax.set_ylabel("X2")
ax.set_title(titles[idx])
az.autoscale(True)

Show the plot
plt.tight_layout ()
plt.show()

Sphere Function Ackley Function

Question 1.1 (0-0.2 pt): Looking at the Sphere and Ackley functions, please discuss the charac-
teristics of these functions and compare their complexity in terms of local and global optima.

Answer:

The Sphere function has d local minima, one along each dimension. It has one global minimum
and its continuous, convex and unimodal. The fucntion is more simple than Ackley. Landscpae is
relatively simple and smooth.

Ackley Function on the other hand more comlex. It has a nearly flat outer region and a large
hole at the centre. There are multiple peaks and valleys in the landscape of the function. Since it
has numerious local minima, its quite challenging for optimizers, since there is great chance that
optimizer could be stuck at some logac minima for a minimalizaiton problem.

Finding global optima in Sphere function would be easier comparing to Ackley Function, since
Ackley has super complex landscape and optimizer could get easily stuck at some local minima
before finding the optima.

Question 1.2 (0-0.25-0.5 pt): Please provide a pseudo-code for your evolutionary algorithm.
Please try to be as formal as possible!

Answer:

Function initialization(population_size, num_dimensions) :
Initialize x as empty list
For each individual in population_size:
Randomly generate an individual values between -50 and 50 with size num_dimensions
Append individuals to list x
Return x

Function evaluation(x, objective_function):
Initialize fitness as an empty list
For each individual in x:
Call objective_function to calculate objective_value
Set objective_value as fitness_score
Append fitness_score to list fitmess
Return fitness

Function crossover(x_parents, p_crossover):
Randomly shuffle x_parents
Initialize offspring as empty list
For i from O to length of x_parents - 1 by 2:
If random number < p_crossover:
Generate a crossover mask for genes
Create offspringl by combining x_parents[i] and x_parents[i+1] based on the ma:
Create offspring2 by combining x_parents[i+1] and x_parents[i] based on the ma
Append offspringl and offspring2 to offspring
Else:
Append x_parents[i] and x_parents[i+1] to offspring
Return offspring

Function mutation(population, mutation_rate):
For each gene in individual from population:
If random number < mutation_rate:
Set perturbation to normally distributed random value with mean O and stan
gene += perturbation
Return population

Function parent_selection(x, f):

Initialize x_parents as empty lists

Initialize f_parents as empty lists

Set population_size equal to length of x

Set tournament_size to 2

For each individual in the population:
Select tournament_size random individuals from x
Determine winner with the lowest(minimization problem) fitness
Append the winner to x_parents
Append the winner to f_parents

Return x_parents, f_parents

Function survivor_selection(x, f, x_offspring, f_offspring):

Combine x and x_offspring into combined_population

Combine f and f_offspring into combined_fitness

Set population_size to the length of x

Sort combined_population based on combined_fitness in ascending order

Clear x

Clear £

For each index in the first 'population_size' elements of 'sorted_indices':
Append the element at this index from 'combined_population' to 'x'
Append the element at this index from 'combined_fitness' to 'f'

Return x, £

Function ea(population_size, max_fit_evals, p_crossover, m_rate, dimensions, objective_fun
HHFHH R
Assign x by calling initialization function
Assign f by calling evaluation function
HUHHHHHAHHHHSHHHEFHHAGHH R FH B AR HHBEFH B RS HHBEFH B RS HH R EFH RS H RS

S S S S s
Selecting x_parents and f_parents by calling parent_seelction function
Generate x_offspring by calling crossover function

Evaluate f_offspring by calling evaluation function

Set x_mutated by iterating through individuals in x_offspring for mutation function
Evaluate f-mutated by calling evaluation function

Select x and f by calling survivor_selection function
HHHH R

Note: for function ea, only the parts with ‘PLEASE FILL IN’ considered in pseudocode.

Task 1.1: Implementation of Evolutionary Algrotihm (0-0.65-1.3-1.95-2.6 pt): Imple-
ment an evolutionary algorithm and its components to find the minimum point of a function. Here,
domain should be between [-50,50].

[38]:

HAHRAAA AR AR AR AR RRRRRRRRRRRAAAAAAA

Grading

0 pts if the code does mnot work, code works but it is fundamentally incorrect

0.65 pts if the code works but some functions are incorrect and it s badlyy
~ezxplained

1.3 pts if the code works but some functions are incorrect but it is,
—ezxplained well

1.95 pts if the code works very well aligned with the task without any,
mistakes, but %t is badly explained

2.6 pts if the code works very well aligned with the task without any,
mistakes, and i1t is well explained

e

#Initialize a population randomly based on the population size and dimensions

def initialization(population_size, num_dimensions):
nimnn

Initialize the starting population with random individuals.
Each gene of an individual corresponds to a point on a dimension in the,
o function

nimnn

B e e e e e e e e e e e
x = []

Iterate through the population_size to give each individual a point ony
~the dimention in the function
for _ in range(population_size):

#Draw samples from a wuntform distribution for each individual.
individual = np.random.uniform(low=-50, high=50, size=num_dimensions)

x.append(individual) #A4ppending all the points in .
i
return x #return population
Implement the ewaluation function that can evaluate all the solutions in ay
~gtven population.
def evaluation(x, objective_function):

"""Evyaluate the fitness of the population members"""

e e

"""This function aims to find the fitness score of the individuals withy

—using objective functions"""

fitness = []

Iterating over all the individuals in T

for individual in x:
Calculating onjective value of each individual
objective_value = objective_function(individual)

Since this is a minimization problem, lower objective wvalue is better.

fitness_score = objective_value

Appending fitness scores
fitness.append(fitness_score)

e B e et et d

return fitness

Implement the crossover operator by choosing a suitable method. Fom,
<inspiration, take a look at the lecture slides
def crossover(x_parents, p_crossover):
"""Perform crossover to create offsprings."""

e
np.random.shuffle(x_parents) # Shuffle parents to ensure random pairing

offspring = []

"""Performing Uniform Crossover. Because constdering the landscape of,

~Sphere and Ackley, and
increased dimensions there should be more explorations has to be made. This,

-18 provided with crossover and generated

vartations. """
for i in range(0, len(x_parents) - 1, 2):

#using crossover probability to make offsprings.
#p_crossover=0.9 so there is 90J chance that a crossover will occur
if np.random.rand() < p_crossover:
Proceed with uniform crossover
Uniformly decide gemes to swap, a 50) chance for each gene
mask = np.random.rand(len(x_parents([i])) > 0.5 #mask is a boolean,
—array, it gives for each index either true or false.

offspringl = np.where(mask, x_parents[i], x_parents[i+1]) #if mask,
~1s True, the gene is taken from z_parents[i]; else from z_parents[i+1]

offspring2 = np.where(mask, x_parents[i+1], x_parents[i]) #if mask,
»1s True, the gene is taken from z_parents[i+1]; else from z_parents[i]

offspring.extend([offspringl, offspring2])

#print (of fspringl, offspring2, offspring)

else:
No crossover, just pass parents to the next generation
offspring.extend ([x_parents[i], x_parents[i+1]])

ot

return offspring

Implement the crossover operator by choosing a suitable method. For,
—inspiration, take a look at the lecture slides

def mutation(x, mutation_rate):
" Apply mutation to an tndividual."""”

RARRRHGARRRGRARARR AR RRR AR RH AR RRGRARRAR AR RRRRARRH AR ARG RARAARTH

Iterate through each gene in the individual
for i in range(len(x)):
Checking if the mutation should occur or not
if np.random.rand() < mutation_rate:
adding a small random perturbation to make the mutation
perturbation = np.random.normal(loc=0, scale=1) #normally,,
~distributed
x[i] += perturbation

e B e B e e e et

return x

def parent_selection(x, f):
"""Select parents for the next generation”""

e e i 2

x_parents = []

f_parents = []

population_size = len(x)

tournament_size 2 # The number of individuals to compete in eachy

~tournament

"""Tournament Selection method."""
for _ in range(population_size):
Randomly select tournament_size individuals from the population
indices = np.random.choice(population_size, tournament_size,,
wreplace=False) #Gives two indices [a, b] for tournament
#zr[i] = [genes], fl[i] = fitness score of that array
tournament individuals = [(x[i], f[i]) for i in indices] #Contains two,
warrays on the given indices(each time randomly)

Select the best individual from the tournament

#the best fitness wvalue for a population ts the smallest fitness wvalue,
«for any individual in the population.

winner = min(tournament_individuals, key=lambda individual:
oindividual[1])

Appending the winner to the parent list
x_parents.append (winner [0])
f_parents.append(winner[1])

HARHHAAAA AR AR AR R R AR BB R RRRRRRRRAAAAAA
return x_parents, f_parents
def survivor_selection(x, f, x_offspring, f_offspring):
"""Select the survivors, for the population of the next generation"""

HURAARBARRRAARRRAAR B ARRRRARRBRARRRARRRRAARBARRRRAARBAARBAAR R AR

""Truncation selection method (form of elitism), where only the best,
»individuals with the best fitness survive to the next generation."""

Put the current population and offsprings into one extended pool
combined_population = x + x_offspring
combined_fitness = f + f_offspring

Determine the number of individuals to retain (assuming population sizey
sremains constant)
population_size = len(x)

Get the indices of the individuals with the highest fitness scores

Sort by fiiness ascendingly for minimization

sorted_indices = sorted(range(len(combined_fitness)), key=lambda i:
<.combined fitness[i])

10

Clear the original population lists
x.clear()
f.clear()
Fill the original lists with the top individuals based on sorted indices
for index in sorted_indices[:population_size]:
x.append (combined_population[index])
f .append(combined_fitness[index])

e B B e e e et et

return x, f

def ea(
hyperparameters of the algorithm
population_size,
max_fit_evals, # Mazimum number of ewvaluations
p_crossover, # Probability of performing crossover operator
m_rate, # mutation rate
dimensions, # number of dimensions
objective_function, # objective function to be minimized

Calculate the mazimum number of generations

Mazimum number of function evaluations should be the same independent ofy,
~the population size

max_generations = int(max_fit_evals / population_size) # DO NOT CHANGE

e e i 2

#Initializing the population and evaluating the fitness.
x = initialization(population_size, dimensions)
f = evaluation(x, objective_function)

e e

Find the best individual and append to a list to keep track in eachy
wgeneration

idx = np.argmin(f)

x_best = [x[idx]]

f_best = [f[idx]]

Loop over the generations
for _ in range(max_generations - 1):
Perform the EA steps

11

HAAA AR AR AR R R R R AR AR AR AR AR AR AR A AR AR AR AR AR R RRRRRRRRAAAAAAAAA
i

Selecting the parents based on fitness (tournement method)
Generate offsprings with the crossover

Evaluate offsprings after the crossover

Take the z_offspring and mutate

Re-evaluate after mutation

Survivor selection for the next generations

So G B0 09

nnn

Selecting the parents
x_parents, f_parents = parent_selection(x, f)

Generate offsprings with the crossover
x_offspring = crossover(x_parents, p_crossover)
f_offspring = evaluation(x_offspring, objective_function) # Evaluate,

<offspring

Mutation of offspring

X_mutated [mutation(individual, m_rate) for individual in x_offspring]

f_mutated = evaluation(x_mutated, objective_function) # Re-evaluate
—after mutation

Survivor selection to form the new generation
x, f = survivor_selection(x, f, x mutated, f mutated)

e e e e e et

Find the best individual in current generation and add to the list
idx = np.argmin(f)
xi_best = x[idx]
fi_best = f[idx]
if fi best < f_best[-1]:
x_best .append (xi_best)
f_best.append(fi_best)
else:
x_best.append(x_best[-1])
f_best.append(f_best[-1])

return x_best, f_best # return the best solution and fitness in eachy
wgeneration

Check Your Implementation: Running The Evolutionary Algorithm Run the cell below,
if you implemented everything correctly, you should see the algorithm running.

12

[39]:

[40] :

Dummy parameters
kwargs = {
"population_size": 20,
"max_fit_evals": 1000, # mazimum number of fitness evaluations
"p_crossover": 0.9, # crossover probability
"m_rate": 0.1, # mutation rate
"dimensions": 10,
"objective_function": Sphere,

Run the EA
x_best, f_best = ea(xxkwargs)

Print the best individual and its fitness
print("Best solution:", x_best[-1])
print("Best Fitness:", f_best[-1])

Clear cache
del x_best, f_best, kwargs

Best solution: [-0.76112811 9.20529693 8.60272307 0.26619662 -2.53783945
-8.82400126

-9.76200615 2.32011776 -3.85989081 -2.01043994]
Best Fitness: 36.331847633239434

Reults and statistical analysis

Remember that the EAs are sthocastic algorithms that can produce different results as a result of
independent runs.

How do we find overal performance of the algorithm and compare the results?

By running multiple times and performing statitical tests. Therefore, you would need to run your
algorithm 20 times and plot the average results.

First, we would need to defining some helper functions for finding the average and standard
deviations of multiple runs and ploting them. In the next few cells, we give you some pre-made
functions for this purpose.

There is no work for you to do, but do look over them and get familiar with how they operate.

def calculate_mean_std(f_best):
"""This 1s a helper function to calculate the mean and standard deviation,
~of the best fitness wvalues."""
f_best = np.array(f_best)
avg = np.mean(f_best, axis=0)
std = np.std(f_best, axis=0)
return avg, std

13

[41]: def run_experiment(population_size, p_crossover, m_rate):
runs = 20 # DO NOT CHANGE - number of runs
max_fit_evals = 5000 # DO NOT CHANGE

spherel10D = []
sphere50D = []
ackleyl0D = []
ackley15D = []

for _ in range(rums):

_, f_best_spherelOD = ea(
population_size[0],
max_fit_evals,
p_crossover [0],
m_rate[0],

10,
Sphere,

)

_, f_best_sphere50D = ea(
population_size[1],
max_fit_evals,
p_crossover[1],
m_rate[1],

50,
Sphere,

)

_, f_best_ackleyl0OD = ea(
population_size[2],
max_fit_evals,
p_crossover[2],
m_rate[2],

10,
Ackley,

)

_, f_best_ackleyl15D = ea(
population_size[3],
max_fit_evals,
p_crossover[3],
m_rate[3],

15,
Ackley,

spherel0D.append (f_best_spherel0D)
sphere50D . append (f _best_sphere50D)
ackley10D.append(f_best_ackley10D)
ackley15D.append(f_best_ackley15D)

14

find average and std of the runs

spherelOD_avg, spherelOD_std calculate_mean_std(spherelOD)
sphere50D_avg, sphere50D_std = calculate_mean_std(sphere50D)
ackleyl10D_avg, ackleylOD_std = calculate_mean_std(ackley10D)
ackleyl15D_avg, ackleyl5D_std = calculate_mean_std(ackley15D)

avgs = [spherelOD_avg, sphere50D_avg, ackleylOD_avg, ackleyl5D_avg]
stds = [spherelOD_std, sphere50D_std, ackleyl0OD_std, ackleyl5D_std]
all runs = [

spherelOD,

sphere50D,

ackleylOD,

ackleyl5D,

return avgs, stds, all_runs

[42]: def generate_subplot_function(
avgs_experiment_1,
stds_experiment_1,
labels,
avgs_experiment_2,
stds_experiment_2,
n_columns,
n_queens,

"""Thts helper function generates subplots for the experiments."”"""
fig, axes = plt.subplots(nrows=1, ncols=n_columns, figsize=(18, 6))

for i in range(len(avgs_experiment_1)):
if avgs_experiment_2 is not None:
Plot data for subplot 1
axes[i] .plot(avgs_experiment_2[i], label="Experiment 2",
~color="green")

axes[i].fill_between(
np.arange (len(avgs_experiment_2[i])),
avgs_experiment_2[i] - stds_experiment_2[i],
avgs_experiment_2[i] + stds_experiment_2[i],
alpha=0.2,
color="green",

)

axes[i] .set_ylim(bottom=0)

if n_queens:
axes[i] .set_ylim(top=n_queens[i])

15

[43]:

[44] -

axes[i] .plot(avgs_experiment_1[i], label="Experiment 1", color="blue")
axes[i] .fill between(
np.arange (len(avgs_experiment_1[i])),

avgs_experiment_1[i] - stds_experiment_1[i],
avgs_experiment_1[i] + stds_experiment_1[i],
alpha=0.2,

color="blue",
)
axes[i] .set_title(labels[il)
axes[i] .set_ylim(bottom=0)
if n_queens:
axes[i] .set_ylim(top=n_queens[i])

Set common labels and title

for ax in axes:
ax.set_xlabel ("Generations")
ax.set_ylabel("Average Best Fitness")
ax.legend()

plt.tight_layout ()

Running The Experiments In the following cell we run the EA over several different hyper-
parameter values.

population_size = [50, 50, 50, 50] # DO NOT CHANGE
p_crossover = [0.8, 0.8, 0.8, 0.8] # DO NOT CHANGE
m_rate = [0.1, 0.1, 0.1, 0.1]1 # DO NOT CHANGE

avgs_experiment_1, stds_experiment_1, all_runs_experiment_1 = run_experiment (
population_size, p_crossover, m_rate

Plotting The Results In the following cell we plot the results of the experiments.

labels = [# DO NOT CHANGE
"Sphere dimensions = 10",
"Sphere dimensions = 50",
"Ackley dimensions = 10",
"Ackley dimensions = 15",

generate_subplot_function(
avgs_experiment_1,
stds_experiment_1,
labels,
avgs_experiment_2=None,

16

stds_experiment_2=None,
n_columns=4,
n_queens=None,

Sphere dimensions = 10 Sphere dimensions = 50 Ackley dimensions = 10 Ackley dimensions = 15

—— Experiment 1 —— Experiment 1 —— Experiment 1 —— Experiment 1
400 600
500
300

400

Y Y
300 & 100 g 100

Average Best Fitness
Average Best Fitness

200
100 5.0 5.0

100

Question 1.3 (0-0.25-0.5 pt): Describe the results that you see in the line graphs. How is the
performance of the EA on Sphere and Ackley functions? How the results are different between
functions and dimensions? What causes these differences?

Answer:

The graphs in the figure represent how the average best fitness—the mean of the best fitness scores
obtained from multiple runs of the EA, with lower values indicating more optimal solutions—
of the genes improves over the generations and finds the optimum solution for the minimization
problem. To illustrate how the graphs work; for ‘Sphere dimension = 10’, the average best fitness
for the solution is around 0 by 40th generation, whereas for ‘Sphere dimension = 50°, by the 40th
generation, it is around 90.

As the dimensions increase for the Sphere function, the average best fitness also changes over the
generations. For instance, at the 100th generation, it is around 20 for dimension 50. With the
higher dimensions, the complexity of the problem increases. Additionally, since the search space in
50 dimensions is expanded, the EA optimizer has to search a larger area, and thus there are many
more solutions to be evaluated, and regions to be explored. In this case, the optimizer samples
more points to gain the same level of understanding of the problems landscape, leading to higher
fitness values because it has explored less of the search space effectively. The steepness of the line
on the Sphere graphs indicates a quicker convergence, as can be seen from the dimension = 10 of
Sphere which shows that the EA consistently finds better solutions more quickly for 10 d.

This is also observed with the Ackley function; it is more complex compared to the Sphere function
and has multiple local minima but since the nature of the function is super complex it definitely
challenges algorithm’s performance. Furthermore, since the Ackley function has numerous local
minima, within the different runs,1 the EA may get stuck in these minima. This results in a wide
range of fitness values, as seen in the figure by the large light blue areas surrounding the blue lines
in the 3rd and 4th graphs.

17

[45] :

[46] :

Despite the higher dimensionality of the Sphere function, which challanges the algorithm with the
large search space, Sphere function’s graph showcases a steep decline in fitness which indicates
that the significant progress of the algorithm within the first few generations. On the other hand,
the Ackley function, with fewer dimensions, shows the algorithm converging towards lower fitness
values more rapidly.

Improve Your Results

Experiment with the hyperparameters of the algorithm and find a set of parameters that can
perform better than the previous results. Compare the results using statistical test and find a
settings where there is a statistically significant improvement.

You can adjust the population size, crossover probability and mutation rate to find the settings that
can work statistically better relative to the previous results. Please look at the “ADJUST THESE
VALUES?” part to experiment and improve your solutions.

Optionally, you can also improve your algorithm by implementing/changing strategies used

Grading (bonus points):

0.4 pts bonus for the optional improvement: i1f you implement different,
wstrategy, tt works and produces significantly better results

Different strategy could be a different implementation of the mutation/
wcrossover/parent or survival selection mechanisms

Implement your strateqy here and integrate with the Evolutionary Algorithm
PLEASE FILL IN

B
e e i e et

population_size = [# ADJUST THESE VALUES
50,
50,
50,
50,

]

p_crossover = [# ADJUST THESE VALUES
0.9,

0.9,

0.9

0.9,

]

m_rate = [# ADJUST THESE VALUES
0.1
0.9,
0.3

3

18

0.9

Remove the line above once you've made the changes you want

AR RARRRRARRRARR R ARRRRARRBARRRRARRRARRRARRRRAARBARRRAARRRAAR AR

Running the experiment again

[47]: avgs_experiment_2, stds_experiment_2, all_runs_experiment_2 = run_experiment (
population_size, p_crossover, m_rate

Plotting the new and previous results

[48]: labels = [
"Sphere dimensions = 10",
"Sphere dimensions = 50",
"Ackley dimensions = 10",
"Ackley dimensions = 15",

1 # DO NOT CHANGE

generate_subplot_function(
avgs_experiment_1,
stds_experiment_1,
labels,

avgs_experiment_2=avgs_experiment_2,
stds_experiment_2=stds_experiment_2,

n_columns=4,
n_queens=None,

Sphere di =10

Sphere di

=50

Ackley dimensions = 10

Ackley dimensions = 15

—— Experiment 2
—— Experiment 1

g & 8

8
8

Average Best Fitness

Average Best Fitness

8
g

5
8

—— Experiment 2
—— Experiment 1

Average Best Fitness

—— Experiment 2
— Experiment 1

Average Best Fitness

—— Experiment 2
—— Experiment 1

°

0 20 40 60 80 100 0
Generations

20

40 60 80 100
Generations

19

20 40 60 80 100
Generations

20 40 60 80 100
Generations

Measuring the statistical significance of differences of two sets of experiment results

The final step is to calculate whether the results from your set of hyperparameters (experiment 2)
resulted in significantly better results.

To do this, we will perform a statistical test know as rank-sum test.

You will calculate the rank-sum for the results of the first and second experiments.

[49]: alpha = 0.05

this loops over the 4 different functions we have
(Sphere dimensions = 10, Sphere dimensions =50, Ackley dimensions = 10,
wAckley dimensions = 15)

labels = [
"Sphere function 10 dimensions:",
"Sphere function 50 dimensioms:",
"Ackley function 10 dimensiomns:",
"Ackley function 15 dimensioms:",

for i in range(4):
runs_exp_1 = all_runs_experiment_1[i]
runs_exp_2 = all_runs_experiment_2[i]

[sublist[-1] for sublist in runs_exp_1]
[sublist[-1] for sublist in runs_exp_2]

best_per_run_exp_1
best_per_run_exp_2

t_statistic, p_value = ranksums(best_per_run_exp_1, best_per_run_exp_2)
if p_value < alpha:
if np.mean(best_per_run_exp_1) < np.mean(best_per run_ezp 2):
print(
labels[i],
"Experiment 1 average:",
np.mean(best_per_run_exp_1),
", Experiment 2 average:",
np.mean(best_per_run_exp_2),
",significant difference.",

)

else:

print (labels[i], "significant difference. Ezperiment 2 is better.")
else:

if np.mean(best_per_run_ezxzp_1) < np.mean(best_per_run_exp_2):
print(

labels[i],

"Experiment 1 average:",

np.mean(best_per_run_exp_1),

", Experiment 2 average:",
np.mean(best_per_run_exp_2),

",no significant difference.",

20

https://www.wikiwand.com/en/Mann%E2%80%93Whitney_U_test

)

else:
print (labels[t], "no significant difference. Ezperiment 2 s
wbetter.”)

Sphere function 10 dimensions: Experiment 1 average: 0.002718504908408991 ,
Experiment 2 average: 0.0011830872724541194 ,significant difference.

Sphere function 50 dimensions: Experiment 1 average: 17.785292309767982 ,
Experiment 2 average: 2.51770404165042 ,significant difference.

Ackley function 10 dimensions: Experiment 1 average: 2.931441329504097 ,
Experiment 2 average: 1.4617611282653442 ,significant difference.

Ackley function 15 dimensions: Experiment 1 average: 12.905017917776291 ,
Experiment 2 average: 4.280965982017202 ,significant difference.

Question 1.4 (0-0.3-0.6-0.9-1.2 pt): Please improve the results significantly in each case (i.e. on
Sphere and Ackley functions with 10, 50 and 10, 15 dimensions respectively) and discuss what kinds
of changes you had to do to achieve this improvement. Please provide your reasoning why the new
parameter settings worked better.

Grading:

0 pts: No answer or non of the cases were improved.

0.3 pts: At least one of the cases improved significantly but reasons why were not clearly explained.
0.6 pts: One or two cases improved significantly and the reasons why were somewhat clear.

0.9 pts: Three to four cases improved significanlty and the reasons why are clear.

1.2 pts: All of the cases improved significanlty and the reasons why are clear.

Answer:

For all four cases, I kept the population size constant. The purpose of this experiment was to
mutation rate and crossover probability- and to understand the possibility of enhancing the op

Sphere function 10 dimensions: (Experiment 1 average: 0.002718504908408991 , Ex-
periment 2 average: 0.0018459482023169) ,significant difference.

I kept the low mutation rate because the Sphere function is unimodal and has simpler optimisat:

The significant difference for better solution is provided by increasing the crossover probabi.

Sphere function 50 dimensions: (Experiment 1 average: 17.785292309767982 , Exper-
iment 2 average: 2.452626965047309) ,significant difference.

Despite the Sphere function being unimodal and not complex, the increased dimensions challenge

Ackley function 10 dimensions: (Experiment 1 average: 2.931441329504097 , Experi-
ment 2 average: 1.5751166406027985) ,significant difference.

Compared to the Sphere function, the Ackley function has numerous local minima and is a much m

21

Ackley function 15 dimensions: (Experiment 1 average: 12.905017917776291 , Exper-
iment 2 average: 4.291578453772402) ,significant difference.

Since Ackley is a complex function, and dimensions have increased, it became more challenging :

1.2 Part 2: Discrete Optimization (The N-Queens Problem, 5 points total)

Implement an Evolutionary Algorithm for the n-queens problem. Below is a visualization of a
solution for the n-queens problem when n = 4. Observe that none of the queens are attacking each
other.

We would like to implement an EA that can find a solution for any given N by N board but in this
case it is required to place N queens where none of them attack each other.

You may use the implementation of the EA you used for solving continuous problems in Part 1.
But remember, this is a discere problem so you would need to think about how to represent the
solutions and search using the evolutionary operators.

Consider, what changes you would need to do!

It is usually better to start simple and generalize your implementation. So, let’s start with the case
when N = 4.

Question 2.1 (0-0.3 pt): How do you represent a solution (a 4 queen placement on a 4x4
chess board)? In particular, specify the length of your genotype representation, what each gene
(dimension) represents, and what values they can get.

Answer:

By N-Queens problem, there can be only one queen present per row, column and diagonal. There
are many ways to represent the solution. I represented it with an array; each index is for a row and
the elements in it for the column. Imagine a chessboard with on the top a, b, ¢, d; which will be
representing the columns. And on the left side e, f, g, h under each other; representing the rows.

For instance, by 4x4 chessboard; the genotype representations aka the solution could be an array
with four elements. In this case each element can get values from 1 to 4. The lengtht of the solution
would be then 4 and each gene(or dimension as mentioned) represents the column which will be
the queen is placed for rows 1 to 4.

Question 2.2 (0-0.2 pt): Please write down an example representation and discuss what it means.

Answer: Lets assume we have 4x4 chessboard. the representation of the solution could be: [2, 4,
1, 3]. This solution ensures that each queen has an unique place on the board. Which means; -
The queen in the first row, is in the second column. - The queen in the second row, is in the fourth
column. - The queen in the third row, is in the first column. - The queen in the fourth row, is in
the third column.

abcd
e . Q.

22

[50]:

[51]:

g Q. .
h .. Q
Question 2.3 (0-0.2 pt): How many possible solutions can be generated in your representation?

Answer:

Amount of possible solutions are depends on the permutation of N elements. In my example: N=4
so there are 4 factorial = 24 possible solution. However, this does not mean that all the solutions
are valid, since there are conditions in n-queen problem that has to be required. So there is a great
chance that there will be less than 24 possible solutions, considering for N=4 there are only 2 valid
solutions. But ofcourse the solutions are depends on the amount of N (aka dimensions and number
of queens).

Task 2.1 (0-0.20-0.40-0.80): Implementation of solution encoding, visualization and evaluation
functions.

L e e e R R R R R R R Ry
example_solution = [2, 4, 1, 3]
B B B B B B B B B R R R R R R R Ry

Write a function below that can visualize your solution. For instance, the output may look like
below, a matrix representing the 4x4 chess board where each) indicates a queen placement and
dots are empty cells.

def visualize_solution(solution):
"""Visualize the placement of queens on the chessboard."""

RARARARABARARABARABRAB AR A RABHRARABHRHRU B U R U RHRHRH AR R R RR AR AR AR RRHH
L = len(solution)
for i in range(L):

row = ['. '] x L

row[solution[i] - 1] = 'Q '

print(''.join(row))

e

23

Write the evaluation function to assess how good your solution is.

[62]: def evaluate_solution_n_queens(solution):
"""Calculate the fitness of a solution based on the number of non-attacking,
~queens. """
n = len(solution)

fitness = 0

Calculate fitness as the number of non-attacking queens
for i in range(n):
is_attacked = False
for j in range(n):
if i = j:
Check 1if the queens attack each other, horizontally or on,
~dtagonal
if solution[i] == solution[j] or abs(solution[i] - solution[jl).
is_attacked = True
break
if not is_attacked:
fitness += 1 # INcrease fitness score for each safe queen
return fitness

Try your implementations to see if your solution encoding matches to visualization and whether
the fitness is computed correctly.

(53] : | ##t#t sttt HH B U ARG U ARG U AR RIS

Grading
0 pts: No attempt, representation discussed does mot match with the,

—implementation and visualization, fitness s not correct.

0.20 : Solution representation matches with visualization, fitnessy
—computation is mot correct, mo ezxplanation in the code.

0.50 : Solution representation matches with visualization, fitnessy
—computation is correct, mo explanation in the code.

0.80 : Solution representation matches with visualization, fitnessy
—computation is correct, the implementation explained well.

HAAA AR AR R AR R R AR R RR AR AR AR AR AR AR AR R RRRRRRRRRRAAAAAAAA

AnnHARpRAA R AR AAAR#E DO NOT CHANGE #AHAAHBAHARBHAAAHHAARBHARHHY

print ("Genotype (solution representation):", example_solution)

print ("Phenotype (solution visualization):")
visualize_solution(example_solution)

print ("Solution fitness", evaluate_solution_n_queens(example_solution))
###n#AR AR AR AR AARAA#A DO NOT CHANGE #HAHAHHAHBARBHARAHBARRARHAY

Genotype (solution representation): [2, 4, 1, 3]
Phenotype (solution visualization):

24

[163] :

. Q.

Solution fitness 4

Task 2.2 (0-0.4-0.8-1.2-1.6 pt): Write an evolutionary algorithm that can initialize a population
of solutions and finds N queen placement to NxN board optimizing the number of attacks (could
be minimization or maximization based on your evaluation function of the solutions).

B

Grading

0 pts <f the code does not work, code works but it is fundamentally incorrect

0.4 pts 2f the code works but some functions are incorrect and it 1s badly,
—sexplained

0.8 pts if the code works but some functions are incorrect but it isy
wexplained well

1.2 pts if the code works very well aligned with the task without any,
-mistakes, but 2t is badly explained

1.6 pts if the code works very well aligned with the task without any,
mistakes, and it is well explained

HAHRA AR AR R R R R R R R R AR AR AR AR A AR AR AR AR AR RRRRRRRRRRAAAAAAA

#initialize a population of solutions for the N queens problem where num_dims =
N

def initialization_n_queens(population_size, num_of_dims):
"""Generate a population of solutions."""
e
PLEASE FILL IN
x = [np.random.permutation(num_of_dims).tolist() for _ in
owrange (population_size)] #Randomly permute a sequence through iterating overm,
~the population
B
return x #return population
def evaluation_n_queens(x):

"""Evaluate the whole population and return the fitness of each."""

return [evaluate_solution_n_queens(solution) for solution in x]

25

def crossover_n_queens(x_parents, p_crossover):
"""Perform crossover to create offsprings.”"""

HURAARBARRRAARRRAAR R ARRRRAARBARR R ARRRAARRBRARRRRRARBAAR R AAR R AR

PLEASE FILL IN
offspring = ?

offspring = []

for i in range(0, len(x_parents) - 1, 2): #this takes pairs of parents for,
~each tteration
parentl = x_parents[i]
parent2 = x_parents[i+1]

if np.random.rand() < p_crossover: #using crossover probability to make,
~offsprings.

size = len(parentl)

childl [None] *size

child2 = [None]*size

crosspointl, crosspoint2 = np.sort(np.random.choice(range(size), 2,
wreplace=False)) #Randomly seelcting the crossover points

#copying the segment at the crossover points for offsprings, 0X,
<method

childl[crosspointl:crosspoint2] = parentl[crosspointl:crosspoint?2]

child2[crosspointl:crosspoint2]

parent2[crosspointl:crosspoint?2]

Loop through the parent lists to fill Nonme parts in child lists,
—with the unique queens.
PMX method; uniquely placing the remaining elements from eachy
wparent into the offspring
for cho in range(size):
if parent2[cho] not in childil:
childl[childl.index(None)]
if parentl[cho] not in child2:
child2[child2.index(None)]

parent2[cho]

parent1[cho]
offspring.extend([childl, child2])

else:
offspring.extend([parentl, parent2])

26

return offspring

def mutation_n_queens(x, mutation_rate):
""Apply mutation to an tndividual."""”
for i in range(len(x)):
if np.random.rand() < mutation_rate: #mutation rate to have the change,
~of mutation
Perform mutation: swap mutation
idx1, idx2 = np.random.choice(len(x[i]l), 2, replace=False)
x[i] [idx1], x[i][idx2] = x[i][idx2], x[i] [idx1]
return x

def parent_selection_n_queens(x, f):
"""Select parents for the next generation using roulette wheel selection."""
x_parents = []
f_parents = []
population_size = len(x)
tournament_size 2 # The number of individuals to compete in eachy
< tournament

"""Tournament Selection"""
for _ in range(population_size):
Randomly select tournament_size individuals from the population
indices = np.random.choice(population_size, tournament_size,,
wreplace=False) #Gives two indices [a, b] for tournament
#x[i] = [genes], fl[i] = fitness score of that array
tournament_individuals = [(x[i], f[i]) for i in indices] #Contains two,
warrays on the given indices(each time randomly)

Select the best individual from the tournament

#the best fitness wvalue for a population is the greatest fitness wvalue,
»for any individual in the population.

winner = max(tournament_individuals, key=lambda individual:
~individual[1])

Appending the winner to the parent list
x_parents.append (winner [0])
f_parents.append(winner[1])

return x_parents, f_parents

27

def survivor_selection_n_queens(x, f, x_offspring, f_offspring):
"""Select the survivors, for the population of the next generation"""

B e e B e B e e e e e et et d

PLEASE FILL IN

#x=7?

#f =72

nitruncation selection method (form of elitism), where only the best,
»individuals with the best fitness survive to the next generation."""

Combine the current population and offspring into one extended pool

combined_population = x + x_offspring

combined_fitness = £ + f_offspring

Determine the number of individuals to retain (assuming population sizey
wremains constant)
population_size = len(x)

Get the indices of the individuals with the highest fitness scores

Sort by fitness ascendingly for maxrimization

sorted_indices = sorted(range(len(combined_fitness)), key=lambda i:,
«combined_fitness[i], reverse=True)

Clear the original population lists
x.clear()
f.clear()
Fill the original lists with the top individuals based on sorted indices
for index in sorted_indices[:population_size]:
x.append (combined_population[index])
f.append(combined_fitness[index])
AR AR AR AR AR R R R R R AR AR AR AR AR AR AR AR AR R AR RRRRRRRRRRRAAAA

return x, f

def ea_n_queens(population_size, max_fit_evals, p_crossover, m_rate,,
~num_of dims):
Calculate the maxzimum number of generations
max_generations = int(max_fit_evals / population_size)

REHHARBUH AR RBUHARRBHH AR RY

PLEASE FILL IN
initialization_n_queens(population_size, num_of_dims)
evaluation_n_queens (x)

X
f

e

28

Get best individual and append to list

idx

= np.argmax(f)

x0_best = x[idx]

f0_best

f[idx]

x_best = [x0_best]
f_best = [fO_best]

Loop over the generations

for _

in range(max_generations - 1):
Select population size parents

HARHHARHHRB BB H BB BB RRRRAAH
#PLEASE FILL IN
x_parents, f_parents = parent_selection_n_queens(x, f)
Crossover
x_offspring = crossover_n_queens(x_parents, p_crossover)
Mutation
x_offspring = mutation_n_queens(x_offspring, m_rate)
Evaluate offspring
f_offspring = evaluation_n_queens(x_offspring)

Survivor selection
x, f = survivor_selection_n_queens(x, f, x_offspring, f_offspring)

b

Find the best individual in current generation and add to the list
idx = np.argmax(f)
xi_best = x[idx]
fi_best = f[idx]
if fi_best > f_best[-1]:
x_best.append(xi_best)
f_best.append(fi_best)
else:
x_best.append(x_best[-1])
f_best.append(f_best[-1])

Append the best individual to the list
f_best.append(fi_best)
x_best.append(xi_best)

return x_best, f_best

Results:

Run the code below to run an EA for N=8, 16 and 32, and visualize the best solutions found.

29

[207]: print("Case when N=8:")

x_best, f_best = ea_n_queens(100, 1000, 0.6, 0.1, 8)

print("Best fitness:", f_best[-1])
print("Best solution found:")
visualize_solution(x_best[-1])

Case when N=8:
Best fitness: 8
Best solution found:

[238]: print("Case when N=16:")
x_best, f_best = ea_n_queens(200, 10000, 0.9, 0.1, 16)

print("Best fitness:", f_best[-1])
print("Best solution found:")

visualize_solution(x_best[-1])

Case when N=16:
Best fitness: 16
Best solution found:

. Q.

30

. Q.
[110]: print("Case when N=32:")
x_best, f_best = ea_n_queens(100, 10000, 0.9, 0.3, 32)

print("Best fitness:", f_best[-1])
print("Best solution found:")
visualize solution(x_best[-1])

Case when N=32:
Best fitness: 32
Best solution found:

. Q.
. Q.
. Q.
. Q.
Q...
. Q.
Q .
Q...
. Q.
Q...
. Q.
. Q.
. Q.
. Q.
. Q.
. Q.
. Q.
. Q.
. Q.
. Q.
Q...
. Q.
. Q.
. Q.
. Q.
... .Q.
. Q.

31

Question 2.4 (0-0.2-0.4-0.6-1-1.5 pt): Describe the results. What was the fitness found for each
case? Were you able to find fitness scores of 8, 16 and 32 for N=8, 16 and 32 cases? How did you
find them? Did you try improving the results by testing different parameters and/or evolutionary
operators?

Grading:
0 pts: no solution or visualization provided.
0.2 pts: Solutions and visualizations were provided, no insights provided how the results achieved.

0.4 pts: Solutions and visualizations were provided, at least for N=8, a optimum solution was
found, limited/no insights provided on how this result is achieved.

0.6 pts: Solutions and visualizations were provided, at least for N=8, a optimum solution was
found, insights on how this result is achieved provided.

1 pts: Solutions and visualizations were provided, for N=8 and N=16, optimum solutions were
found, insights on how this result is achieved provided.

1.5 pts: Solutions and visualizations were provided, for N=8, N=16 and N=32, optimum solutions
were found, insights on how this result is achieved provided.

Answer:
I was able to find fitness scores of 8, 16, and 32 for N = 8 N = 16, and N = 32, respectively.

This was a maximization problem, so the higher the fitness score, the better it was. So, I aimed to
find the best fitness score as the highest. Since, in this case, there weren’t any objective functions,
I designed the evaluation function to calculate the fitness for the solution while keeping track
of the non-attacking queens. Thus, the fitness score is calculated for each non-attacking queen. In
this approach, the function was able to detect the queens that weren’t on the same diagonal, row,
or column.

The initialization of the queens is done with arrays in which indices represent the rows, and the
values of those indices represent the columns. Additionally, the function initializes a population
with unique rows and columns for each queen by using permutations. For the parent and survival
selection, I kept the functions from part 1; the only changes that I made in the functions were
to change “min” to “max” so they would work for the maximization problem. Considering the
tournament selection and elitism in the survival selection functions, the algorithm was able to work
efficiently.

For the crossover function, my method was a hybrid one. I combined OX (Ordered Crossover)
and PMX (Partially Mapped Crossover) to get the optimal solution. OX is a crossover method that
allows the function to select two parent chromosomes, and a segment of genetic material (genes)
from one parent is inserted into the offspring in the same order it appears in the parent adn the
remaining genes are filled in using the genes from the second parent. I chose to use OX and PMX
techniques because the N-queen problem is a permutation-based problem for which OX and PMX
are generally used. - Initially, I tried to use only OX but encountered some NoneType errors or
problems later on in the mutation function. I had to come up with a solution such as PMX, which
ensures that the offspring retains some of the characteristics of both parents while still generating
new solutions and thus fully fills the list to prevent the NoneType error.

32

For the mutation part, I used the basic swapping method, which is performed by the mutation
rate. However, to find the optimal solution for N=8, N = 16 and N = 32, improved the results by
changing the parameters.

e For N= 8, I reduced the population size and increased the crossover probability. N=8 is
not a complex problem, so optimizer does not have to search through numerious variations.
Therefore, generating and having huge genetic diversity of the population throught the huge
population size seemed to cause challenges for the performance of the optimizer. Thus at first
it did not provided correct solution even though the fitness was optimum. To prevent that,
i kept the population size lower and increased crossover population only by 0.1 to keep the
balance.

e For N = 16, I reduced the population size, mutation rate to prevent unnecessary gene vari-
ations that could lead to a decrease in the performance of the optimizer. Also, with the
reduction in population size, the algorithm performed faster, and without the unnecessary
variations, the solution was provided.

e For N = 32, the situation was different. To find the optimal solution for N = 32, the optimizer
should have more variations of the genes so that a solution for the problem could be provided
with the best fitness score. So, I increased the probability of crossover and mutation rate
to increase the chance of crossover, thus leading to more variations that could lead to the
solution. This led the algorithm to find the best fitness for N = 32.

Thus with this prametric changed the optimal fitness along with the solutions provided.

Plotting the average performance of the algorithm Use the cells below to plot the results
of your algorithm similar to Part 1. The plots should show average and std of 10 runs of EA for
n-queens problem for N=8, 16, 32.

[208] : def run_experiment_n_queens(population_size, p_crossover, m_rate):
These are the hyperparameters of your evolutionary algorithm. You are not,
~allowed to change them.

max_fit_evals = 10000
fitness_8 = []

fitness_16]
fitness_32 = []

runs = 10

for run in range(runs):

", run)

print ("Run:
_, f_best_8 = ea_n_queens(
population_size[0], max_fit_evals, p_crossover[0], m_rate[0],
snum_of _dims=8

)

33

_, f_best_16 = ea_n_queens(
population_size[1], max_fit_evals, p_crossover[1], m_rate[1],
snum_of_dims=16
)
_, f_best_32 = ea_n_queens(
population_size[2], max_fit_evals, p_crossover[2], m_rate[2],
snum_of_dims=32
)
fitness_8.append(f_best_8)
fitness_16.append(f_best_16)
fitness_32.append(f_best_32)

avg_8, std_8 = calculate_mean_std(fitness_8)
avg_16, std_16 = calculate_mean_std(fitness_16)
avg_32, std_32 = calculate_mean_std(fitness_32)

avgs = [avg_8, avg_ 16, avg_32]
stds = [std_8, std_16, std_32]
all runs = [fitness 8, fitness 16, fitness 32]

return avgs, stds, all_runs

[209] : population_size = [100, 100, 100] # not allowed to change
p_crossover = [0.8, 0.8, 0.8] # not allowed to change
m_rate = [0.1, 0.1, 0.1] # not allowed to change

avgs_experiment_1, stds_experiment_1, all_runs_experiment_1 =
orun_experiment_n_queens (
population_size, p_crossover, m_rate

Run:
Run:
Run:
Run:
Run:
Run:
Run:
Run:
Run:
Run:

©O© 0 N O Ok W N~ O

[210]: | labels = ["N = 8", "N = 16", "N = 32"]
generate_subplot_function(

avgs_experiment_1,
stds_experiment_1,

34

labels,
avgs_experiment_2=None,
stds_experiment_2=None,
n_columns=3,
n_queens=[8, 16, 32],

8 16
—— Experiment 1
7 14

—— Experiment 1

Average Best Fitness
Average Best Fitness

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 7 100 125 150 175 200
Generations, Generations Generations

Question 2.5 (0-0.2-0.4 pt) Describe the average performance of the algorithm. What was the
maximum average fitness found for each case? Do you see any differences between the problem
cases?

Answer:

The average performance of the algorithm across the generations indicates a consistent improve-
ments for all the cases. - For N=8 EA reaches the optimum solution within 50 generations and
remain constant at the best average, which is quicker than the other cases considering their im-
provements continued within 0-115 or 0-200 generations. Additionally, as can be seen from the
figures; N=8 indicates a simpler problem space that leads algorithm to explore more effectively and
find the solution quicker. - For N=16, algorithm’s improvement continued within approximately
115 generations and stayed stable after finding the solution. This mean that the search space of it
could be more complex but still within the capability of algorithm to find the best fitness efficiently.
- For N=32, since there was more queen to consider and the problem become more complex, finding
the solution for the optimiser took more than 200 generations without any stabilisation. Addition-
ally, it has more variance as indicated by the wider confidence interval. Thus the efficiency of the
algorithm reduced due to the complex problem space.

From these observations it is true to say that the complexity of the search space increases if the
size of the problem, this case N, increases. Therefore, reaching the best fitness possibly takes
more generations for the algorithm. This is also due to the complexity and nature of the N-
Queens problem that configurations grows exponentially with N and which definitely challenges
the optimizer. The wider confidence interval in larger N values also indicates greater variability
in the algorithm’s performance, which could be attributed to the increased difficulty of finding
non-attacking arrangements as the board size(N) grows.

35

	Assignment 2
	Part 1: Continuous Optimization (5 points total)
	Part 2: Discrete Optimization (The N-Queens Problem, 5 points total)

