Enhancing Workflow Automation with Model
Context Protocol and Claude Artificial
Intelligence

Kocabiyik, S. (Selma)!

Vrije Universiteit Amsterdam, The Netherlands
s.kocabiyik3@student.vu.nl

Abstract. This report presents the results of an internship project at
CoreMagnet, a B2B company specializing in Al-driven lead generation
and business process automations. To address the challenges faced by
CoreMagnet, a system was developed that integrated Claude Artificial
Intelligence (AI) with workflows using the Model Context Protocol (MCP).
The objective was to determine whether this architecture could reduce
manual effort, improve contextual awareness, and provide an accessi-
ble interface for non-technical users, compared to CoreMagnet’s manual
API-only workflow configurations. To evaluate this, two workflows were
implemented based on a representative business use case: (1) a tradi-
tional manual n8n workflow and (2) an MCP-integrated system where
Claude served as the natural language interface for workflow manage-
ment. The findings demonstrated that the MCP-based system success-
fully addressed the drawbacks of manual automation and improved effi-
ciency. In general, the system improved context awareness, user interac-
tion, and scalability. The project not only confirmed the advantages of
MCP cited in the literature but also demonstrated their practical value
in real-world business automation.

Keywords: Model Context Protocol (MCP) - Large Language Models
(LLMs) - Business process automation.

1 Introduction

This report presents the results of an internship project at CoreMagnet, a
B2B company that specializes in Al-driven lead generation and business process
automation [16]. CoreMagnet uses the low-code automation platform n8n.io [14]
to build workflows that support key business activities, such as data collection
and lead management.

n8n allows users to visually design workflows by connecting multiple services
and Application Programming Interfaces (APIs) through nodes. This enables
automation of tasks such as data extraction and Customer Relationship Man-
agement (CRM) updates. Employees are responsible for using these workflows
to complete business tasks.

2 Kocabiyik, S. (Selma)

However, operational delays occurred as workflows expanded and the demand
for complex tasks increased. Each new workflow required manual setup of API
calls, had its isolated logic, and lacked persistent context between workflows.
Practically with a manual trigger, no tasks ran in parallel and lacked shared
context. As a result, user needed to continuously supervise the automation sys-
tem to track processes and assign additional tasks.

The challenges increased the development effort. This restricted the monitor-
ing and initiation of automations to technical users only. Consequently, employ-
ees who lacked technical proficiency struggled to initiate or coordinate business
processes independently.

To address the limitations, CoreMagnet decided to integrate Claude AI
(Anthropic’s large language model) [17] as a natural language User Interface
(UI) for workflow automation.

Consequently, the project employed the Model Context Protocol (MCP)
[11], a standardized client-server protocol, to connect Claude to n8n workflows
as external tools. This would retain persistent context throughout the sessions,
which ensures scalable and context-aware automation.

In this architecture, Claude tracks business processes and initiates the system
in a natural language. This eliminates manual configuration for external tools
and makes the system more accessible.

The core problem evaluated in this report is: How effectively does the inte-
gration of MCP and Claude improve scalability, contert awareness, and user-
friendliness in business automation, by providing a natural language interface,
compared to the original system based solely on manually configured workflows?

Thus, the purpose of this project is to discover the effectiveness of the MCP-
based system in real-world business automation. The objective is to determine
whether this architecture can reduce manual effort, improve contextual aware-
ness, and provide an accessible interface. This demonstrates system performance
compared to CoreMagnet’s current manual, API-only workflow configurations.

For evaluation, two systems were implemented based on a representative
business use case, data collection: (1) a manually controlled n8n workflow, and
(2) an MCP-integrated system where Claude serves as the natural language
interface for workflow management. The evaluation considers development effort,
context awareness, user interaction, and scalability.

Both manual and MCP-integrated processes consist of API calls for Apify [18]
and Google Sheets. The key distinction lies in how these APIs are managed:
Manual workflows require users to manually configure and trigger each API in-
tegration within n8n. The MCP approach allows Claude to coordinate workflows
via a single natural language interface. MCP server enables the registration of
multiple external tools and dynamic calls.

The remainder of this report consists of the following: Chapter 2, the liter-
ature; Chapter 3, implementation of the solution and evaluation of the system:;
Chapter 4 discusses the findings.

Workflow Automation with MCP and Claude AI 3

2 Literature Study

This literature review highlights the challenges encountered in integrating large
language model (LLM) systems, with an emphasis on the technical limitations of
API-based AT tools. The Model Context Protocol (MCP) is a proposed solution
that offers a standardized method for connecting LLMs to external tools. Re-
cent benchmark results evaluating the effectiveness of MCP in context retention,
modularity, and scalability are also discussed.

2.1 LLMs as Natural Language Interfaces

Cheung [9] indicates in his study on LLM evaluation that conversational agents
present intelligent and contextually relevant responses to user input. In a range of
business scenarios, this provides customized support and effective management.
The advanced capabilities of LLM streamline complex workflows and make ex-
ternal resources accessible through intuitive natural language interaction [9].
These findings reinforce the rationale for using LLM as a complete User Inter-
face for business automation.

Researchers have demonstrated that the integration of LLMs into other soft-
ware systems via API endpoints presents challenges [1,2,4]. API is a standard
method for connecting software applications and external tools. Chen et al. [4]
claim that establishing a connection between LLM and the API endpoints of
external systems requires development effort and introduces difficulties.

Therefore, these challenges also needed to be addressed during project im-
plementation, since our objective was to develop Claude as the main interface
and the key agent to manage business tasks.

Prompt Sensitivity and LLM Unpredictability Prompt Sensitivity is a
significant technological challenge for LLMs. Even little changes to the prompt
can cause a considerable misunderstanding for LLM and affect the output. This
unpredictability can affect reliability in business automation scenarios [9]. Chen
et al. and S. Pozdniakov et al. state that well-structured prompts can reduce
errors in output. Therefore, system-level prompt initialization is necessary for
robust and repeatable performance [4, 10].

These issues also occurred during the development of the project, particu-
larly when communication between Claude and n8n was implemented via MCP.
Despite having established a modular, memory-aware system, it was observed
that the LLM occasionally sent incomplete or incorrect requests to n8n work-
flows. These errors often led to unsuccessful or unnecessary workflow triggering.
This affected the reliability of the system and resulted in incomplete tasks.

The research of Chen et al. highlights that the unpredictability of LLM can
be overcome with controlled prompt instructions [4]. In addition, S. Pozdniakov
et al. state that prompt engineering often requires that users “engage in the de-
velopment, trial, and testing of different queries against the desired output” [10].
However, both studies do not offer concrete implementation strategies for robust

4 Kocabiyik, S. (Selma)

prompt engineering in automation contexts. This gap motivated the focus on de-
veloping workflow-specific prompts, which is essential to maintain reliability in
production.

Consequently, a strategy for designing structured, task-specific prompt in-
structions for Claude was adopted. By explicitly constraining and guiding the
model behavior for each workflow, the consistency and accuracy of LLM-initiated
automations improved significantly.

2.2 Integration Challenges in Software systems

In this section, the literature is reviewed to address related integration issues and
constraints. The following problems presented by researchers are directly relevant
to the internship project and present challenges similar to those encountered by
the company.

Manual API Configuration and Limited Extensibility Singh et al. [1] and
Chen et al. [4] indicate that integrating an LLM into present software applica-
tions via traditional APIs requires considerable manual configuration. Typically,
each new tool or feature requires different API endpoints and configurations.
This complicates development and increases the likelihood of errors. Therefore,
some challenges may arise when performing tasks such as setting parameters and
managing rate limits.

Furthermore, when integrating API endpoints into an existing software sys-
tem, the tools or services involved may not be fully compatible. Integrated
tools may also lack the flexibility needed to support certain features of the
system [4]. This leads to additional configuration in the software application
to accept API connections. However, this can complicate development and in-
crease troubleshooting. This indicates that the system architecture or APIs were
not originally designed for multimodal support. For example, extending a text-
only LLM application to handle image or audio inputs may require significant
recoding.

Project Alignment:

In n8n, each workflow consists of separate API calls to connect different tools.
Additionally, whenever a workflow needed a new capability, it often required
creating new endpoints and manually mapping data between steps. Therefore,
during the project, working with APIs in n8n required a development effort.

Moreover, during the implementation of the MCP server in n8n, it was essen-
tial to design the workflow architecture correctly. This means connecting all the
API calls in proper order. Consequently, LLM gained access to all the features
of the workflow.

Integration Complexity and Lack of Standardization Perron et al. [5]
argue that each additional integration of APIs into the system makes it more
complex. According to the research, the probability of errors increases with the
number of integrated applications. This is especially the case when third-party

Workflow Automation with MCP and Claude AI 5

APIs (provided by external companies that allow applications to access their
data sources) adapt or deprecate features.

However, the study by Perron et al. [5] does not evaluate protocol-based
solutions that could improve maintainability. In contrast, Singh et al. [1] suggest
that protocol-based systems, such as MCP, address the related problems.

A key underlying cause of these challenges is the lack of standardization in
LLM architectures. Standardization refers to the adoption of common protocols
or interfaces that enable different systems and components to work without any
problem.

As Krishnan points out, many current LLM systems do not provide standard-
ized interfaces to connect different components. This limitation makes it difficult
to reuse or scale some Al applications. As a result, the lack of standardization
restricts interoperability, making the connection of LLMs to external resources
challenging [2].

Project Alignment: As the number of workflows needed to support business
operations on the n8n platform increased, each workflow had to be manually
started. Additionally, to use an LLM within the n8n platform, every workflow
had to be connected to the LLM separately with an API key. This fragmented
approach complicates the monitoring and management of the automations.

Particularly when attempting to coordinate or chain workflows for more com-
plex tasks. The change required a way to connect all business workflows to a
single LLM interface. This implementation is not just for the convenience of
non-technical users but to enable new capabilities. For example, this led the
LLM to manage multiple processes along with providing a unified context.

Persistent-Context Challenge Krishnan defines the Disconnected Model
Problem as the tendency of most API-based integrations to isolate workflows
and agents. When each agent or process operates independently, it forgets pre-
vious user actions and tool outputs. This results in a lack of persistent memory
and context sharing between the systems [2].

In business applications, it is especially important for Al systems to main-
tain and share a consistent context to perform complex tasks effectively. In this
regard, the product created within the project extends these findings. Using
a demonstration that persistent context can be practically achieved with n8n
workflows through the protocol.

Project Alignment: The Disconnected Model Problem also occurred through-
out our business operations. In n8n, each workflow initiated by a user is unaware
of the activity of the previous session or the current session status, unless explicit
memory or log nodes were used. This issue complicates the process. Users must
re-enter identical information, and subsequent procedures may not utilize the
outcomes of the previous workflow. This creates confusion for users and limits
automation systems. Therefore, the company sought a solution to this problem,
namely the integration of MCP.

6 Kocabiyik, S. (Selma)

2.3 MCP: A Standardized Integration Solution

The limitations outlined in the previous section have motivated the search for
more robust and scalable integration strategies. To address the stated challenges,
Anthropic introduces the Model Context Protocol (MCP) as a standardized so-
lution [1,11,13]. Singh et al. [1] describe MCP as the "USB-C for AT’, highlight-
ing its potential to standardize and simplify tool integration between software
systems.

The key advance according to Krishnan [2] is that MCP provides a client-
server architecture where tools (workflows or resources) can be registered once
and LLM can call them as needed. In the system, LLM acts as the client and
resources, such as the n8n automation platform, serve as the server. The client
sends tool requests, and the server responds by executing corresponding work-
flows. This enables real-time coordination between LLM and external sources [1].
In this way, software systems and external tool connections can be developed
without facing API integration challenges.

MCP provides a common ’language’ that simplifies how different components
connect and share context. This standardization means that the systems follow
the same format and rules for communication between software systems. There-
fore, developers can add new tools or data sources with minimal extra effort [2].

MCP Benchmarks MCP also mitigates the disconnected model problem. Kr-
ishnan [2] conducted a series of benchmark experiments comparing MCP-enabled
multi-agent systems with conventional integration approaches. In this case, those
are manual API-based integrations, workflow automations without shared mem-
ory, and custom scripts. These experiments focused on tasks that involve context
sharing, system coordination, and knowledge integration. This section exclu-
sively presents results related to context awareness and system scalability.

Context-Awareness: MCP systems showed 83.7% better long-term coher-
ence performance. Furthermore, cross-agent transfer reached 79.4%. The preci-
sion of context retrieval in MCP systems was 76.8%. In addition, MCP increased
overall context utilization by an average of 37.2%. These results indicate that
MCP-based systems have consistent access to shared memory and even share
context between agents.

Scalability: Additionally benchmark results state that MCP-enabled sys-
tems are significantly more scalable. The experiments showed that the commu-
nication overhead in MCP systems scaled at O(n log n) as the number of agents
increased. In contrast, its O(n2) in the baseline approaches. Furthermore, coor-
dination efficiency improved with the reduction 47% in communication volume,
and conflict resolution occurred 3.2 times faster. This means that when more
agents are added to the system, the messages do not unnecessarily grow, and
the communication is maintained. Even when multiple agents attempted to ex-
ecute overlapping tasks, MCP enabled this to happen 3.2 times faster. MCP
systems also achieved near-optimal task allocation (only 12% off-optimal), while
maintaining high context retention and utilization as more workflows and agents
were added.

Workflow Automation with MCP and Claude AI 7

By providing a standardized protocol for connecting agents and workflows,
MCP ensures that any component of the system can access shared context and
memory, regardless of its original design. In practice, this means that MCP solves
the disconnected model problem. Users no longer need to repeat instructions,
meaning that systems can automatically refer to previous actions. This stan-
dardization of context management makes it possible to build more complex,
reliable, and user-friendly automations.

See Appendix A for further results. The findings of the experiment set an
upper-bound expectation for CoreMagnet, which is used and tested for the eval-
uation of the data-collection workflow.

2.4 Limitations of MCP

Although MCP offers significant improvements in context management and mod-
ularity, the literature also highlights some challenges. Those are increased initial
setup complexity, dependence on protocol compatibility, and potential integra-
tion challenges in large-scale deployments. The articles also note concerns about
security, maintenance overhead, and the lack of long-term studies of real-world
implementations [1, 2].

The persistent context and modular integration advantages highlighted above
motivated the choice of MCP for this project. However, to date, no research has
investigated the application of MCP in the low-code platform n8n or explored its
usability for nontechnical users. This project addresses the gap with an MCP-
integrated LLM system in a real-world automation context.

The following chapter presents the system implementation and evaluates its
effectiveness in addressing CoreMagnet’s automation challenges.

3 The Solution

The main objective of this project is to design a system that fully automates
business processes. This setup enables Claude to control external tools directly
through MCP.

Although n8n enables workflow automation, its manual setup becomes dif-
ficult to manage as business tasks increase. The lack of persistent context and
poor user interfaces limit accessibility for nontechnical users.

To address these challenges, MCP was implemented, which allowed work-
flows to be registered as external tools in Claude. This approach enabled full
use of Claude’s capabilities, including context awareness or document handling.
Moreover, users can interact with automation workflows using natural language.

However, due to current MCP integration limitations, the system was built
in the Claude desktop application. Anthropic has not yet released a cloud-based
online version that supports external tool integration through MCP.

During my internship, I analyzed how a range of workflows developed by
my team members could be integrated into Claude via MCP. For evaluation and

8 Kocabiyik, S. (Selma)

demonstration purposes, I developed two workflows based on one use case: Data
Collection.

The first system is manually triggered, while the second system uses MCP
integration with Claude as the natural language interface. Both systems perform
the same task: scraping lead data via Apify and storing the results in a Google
Sheet.

The data collection use case is based on one of the company’s production
workflows, which involves more than ten n8n action nodes and considerable
complexity. Therefore, for the purpose of this evaluation and to keep things
clear in the report, the workflow was simplified.

3.1 Implementation

Manual Workflow In n8n, a project file can contain only one manually trig-
gered workflow. This means that two workflows with the same manual trigger
node cannot exist in the same file.

In manual workflow, the process is manually triggered and managed by the
user. This workflow consists of 7 nodes; with 6 actions and 1 trigger node, see
Figure 1. The action nodes are responsible for executing the tasks.

The first node When clicking ’Test workflow’ demonstrates that the user
must click 'test workflow’ within the platform to initiate the system.

The keys node stores the Apify API key information. This key is used in the
next node for the HTTP request to Apify.

The action node Collect lead data uses a provided URL to scrape the re-
quested lead data. Each request to the Apify platform collects 500 lead data and
costs $0.60.

The scraping process takes approximately 2 minutes. Therefore, the Wait1
node holds the automation process for 3 minutes. This prevents the workflow
from sending another request to the Apify platform before finishing the scraping
process.

The datasetld node contains the scraped data set ID. This ID is used in the
next HTTP request node to access the data set on Apify. Finally, the Google
Sheet2 node saves the data in the selected sheet.

(O

When clicking ‘Test key:

Collect lead data HTTP Request Google Sheets2
workflow' : pendOrUpdate: sh

Fig. 1. The manual n8n workflow of data collection use case.

Workflow Automation with MCP and Claude AI 9

Fig. 2. The MCP-integrated workflow of data collection use case.

MCP Integrated Workflow MCP-based automation is a parallel version of
the manual workflow that accomplishes the same task, see Figure 2.

In this version, the process is initiated through a natural language command
in Claude (e.g., ’Scrape the data and save it in the Google Sheet.”).

To assist Claude in requesting the appropriate commands for starting the
system, I prepared prompt instructions within the Claude project directory (see
Figure 3 for example prompt instructions). This enabled Claude to send appro-
priate requests to the automation system.

Set project instructions

1.® Interpret User Intent Carefully

If the user say

“Scrape and chec in Google Sheets?”

or

“Run it and show me the data”

—» Do not trigger both tools blindly.

2.8 First: Confirm Scraping Input

Before using Apify, ask the user to provide:

Industry or business type

Location

Optional filters (e.g., size, tags)

After receiving complete input, always ask:

“Would you like me to start collecting this data now?”
Proceed only if the user says “yes” or clearly confirms.
3. X Wait for Apify Completion

Aftor ctarting a inh with Anifu wait for tha inh tn reach ctatue: REANY

Cancel Save instructions

Fig. 3. Example of a prompt instruction within project file of Claude.

10 Kocabiyik, S. (Selma)

How does MCP communicate? When an input is received, MCP enables
Claude to automatically trigger the corresponding n8n workflow, execute the
necessary HT'TP requests, and store the results in Google Sheets.

The MCP Server Trigger node (see Figure 2) allows one to register multi-
ple workflows as callable tools. It enables direct connection of the action nodes
without additional complexity.

Hence, I integrated manual workflow and Google Sheets as nodes to the server
trigger node.

To connect a workflow to the MCP server, I changed the manual trigger
node to executed by another workflow, see Figure 2. In n8n, this means that an
external tool or service can initialize the workflow.

In addition, connecting the Google Sheets node directly to the MCP server
eliminated the need to build a separate workflow only to verify the data in the
spreadsheet.

The MCP Server Trigger node provides a production URL that must be
saved in the Claude desktop configuration file with the JSON code format. This
enables Claude Desktop to access the server and send correct commands via
MCP.

The provided URL becomes the endpoint for Claude to send requests and
receive real-time responses (see Figure 4).

{

"mcpServers": {

"n8n": {
"command": "npx",
"args": [
oy
,
"supergateway",

"--sse",
“PRODUCTION_URL"
]
}
}
}

Fig. 4. The code used by Claude to connect to an MCP server.

Thus, the user can also ask Claude about the progress or outcome of the task
(e.g., 'Was the data saved?’) and receive real-time feedback. This interactive
feedback is not available in the manual workflow, where users must check the
Google Sheets platform directly to verify completion.

For reference, a sample MCP request and response format is provided in
Figure 5.

Workflow Automation with MCP and Claude AI 11

Claude would like to use an external integration

Review each action carefully before approving

Claude cannot guarantee the security or privacy
practices of third-party integrations.

Decline Allow always

Fig. 5. MCP request and response format.

12 Kocabiyik, S. (Selma)

3.2 Evaluation

To evaluate the effectiveness of the MCP-based solution, I focused on a repre-

sentative Data Collection use case. While the evaluation focuses on a single use

case, it captures multiple sub-tasks that reflect broader automation challenges.
These include:

. MCP Configuration and Integration

. Prompt Sensitivity and Message Limitation

. Task Recall Over Time

. Context Sharing Between Tools

. Natural Language Interaction (user-interface evaluation)
. Expansion Challenges and Re-usability

S U W N

CoreMagnet primarily faced the following challenges: poor user interface, lack
of persistent context, limited scalability, and inefficient communication between
users and the system. Therefore, the sub-use cases allowed for a more nuanced
evaluation of the system’s effectiveness across four core dimensions: development
effort, context awareness, user interaction, and scalability.

Development Effort The development effort for this system is determined by
the amount of time spent implementing and improving it.

1. MCP Configuration and Integration During the development of the data col-
lection system, the manual workflow (see Figure 1) took approximately an hour.
In addition, integration of the MCP layer on top of the system (see Figure 2)
took 4 hours to complete. This was due to my need to understand MCP systems,
along with trial-and-error sessions on prompt instructions.

In both systems, the workflows needed to be correctly integrated with the
APT endpoints of the Apify and Google Sheets platforms. Initially, properly in-
tegration of the APIs took time. As mentioned in the literature section, API
integration between software systems and external tools can be challenging and
time consuming. Additionally, connecting the MCP server node to the workflow
system required additional architecture. Therefore, finding the correct imple-
mentation order with MCP took time.

However, once the workflow was properly organized, it was:

— In the MCP system: Integration of external tools with the MCP server
trigger node took about 5 minutes, along with additional node configurations.
— Manual Workflow: On the other hand, generating a new project file just to
verify the stored data in Google Sheets would take around 10 to 15 minutes.

Based on my observations and how the system works, manually handling
even a single tool in n8n becomes inefficient, especially as workflows expand.
Repeating the creation of project files and setting the API connection archi-
tecture for just one action takes more effort. In contrast, the same tool can be
added to the MCP server trigger node with just three mouse clicks.

Workflow Automation with MCP and Claude AI 13

2. Prompt Sensitivity and Message Limitation Initially, Claude failed to send
the correct tool requests and triggered the same workflow multiple times due to
prompt sensitivity.

Example

e Input: 'Scrape data and check if it is in Google Sheets.’

e Output: Claude triggered the data scraping workflow 3 times and then
the Google Sheet workflow 3 times. As a result, notified the user that
the task is not completed.

e Impact: Because Apify takes about 3 minutes to finish scraping, the
sheet was still empty. Claude misinterpreted this and restarted the sys-
tem multiple times, thinking that the data had not been scraped yet. The
system was triggered 3 times unnecessarily. This risked redundant API
usage, leading to additional costs on the Apify platform and incomplete
tasks.

To address this, iterative prompt engineering and extensive testing in Claude
were required, as mentioned in the literature study.

I designed structured prompts that included expected scraping duration and
clear instructions, such as:

"Trigger the scraping workflow only once. Do not trigger the Google Sheets
tool unless the user asks.” (see Appendix C).

This ensured that Claude would wait and monitor the sheet over time be-
fore acting again, rather than assuming an error in the workflow. The prompt
instructions and adjustments took about 2 hours to refine.

After implementation, the system correctly interpreted user intentions and
avoided redundant workflow triggers. This significantly reduced unnecessary us-
age and the cost of Apify.

Message Limitation: During prompt testing, I encountered message limi-
tations. Claude has a finite token window. After several exchanges, Claude would
inform me that the chat had exceeded the limit. This forced me to create more
structured prompt instructions that would help the LLM complete tasks within
those limits.

In contrast, the manual workflow did not have such constraints. Actions could
be initiated as often as necessary without any messaging restrictions.

Results

— Initial setup time, see Table 1: For both systems, organizing workflows and
integrating tool APIs took time. However, the initial setup time of the MCP
system was higher due to the additional implementations.

— Prompt sensitivity added considerable manual effort to the initial setup and
increased development time.

— Once the MCP environment was established and the prompt sensitivity re-
solved, adding new workflows as external tools in the LLM became much
easier and faster than repeating the manual project setup in n8n.

14

Kocabiyik, S. (Selma)

Workflow Type Development Time
Manual Workflow ~1 hour
MCP-Integrated Workflow ~4 hours

Table 1. Development time for each workflow.

— The initial setup may be challenging for non-technical users, but the ongoing

effort for using automation is significantly reduced.

Thus, in terms of development effort, the manual approach offers rapid setup

for one-off use cases, but becomes inefficient and repetitive as the complexity of
workflows increases. In contrast, the MCP approach, despite the initial devel-
opment effort, provides greater maintainability and extensibility, which might
reduce development time in the long term.

Context Awareness

3. Task Recall Over Time

e The manual workflow: The system lacks a built-in memory function.

The task previously executed is not easily accessible to the user. In this
case, | had to go to the history logs on the n8n platform to check the
past processes.

The MCP-integrated system: I asked the chatbot to perform a data
scraping task and start the workflow. After 2 hours, I returned to ask
about my previous action and information about the task. As an output,
Claude gave me all the data from the previous execution.

4. Context Sharing Between Tools

e The manual workflow: I had to switch between different applications

to see if Apify had finished scraping and whether the data set was cor-
rectly saved to Google Sheets.

The MCP-integrated system: Once I integrated MCP with the Server
Trigger node, Claude could inform me directly whether the task had been
completed, failed, or successfully saved. I started receiving real-time up-
dates and task confirmations directly from the LLM interface. Unless 1
wanted to debug a specific issue, I never had to leave the LLM’s interface
or manually verify any external platform (see Figure 6).

Results In the manual workflow, I constantly had to double-check the status
of tasks manually. This slowed the process and increased the chance of missing
context or losing track of the workflow status.

With MCP integration, I no longer needed to switch between platforms or

manually verify everything. Claude gave me updates and memories of previous

Workflow Automation with MCP and Claude AI 15

e is the data collection process done?

Let me check the current status of your data collection job for you.
A Apify_data_collection

The data collection is still in progress. Here's the current status:
@ Status: READY (Still Processing)

e Current Job ID: bbPQa0OelhbJcFMmW

o Started: 13:23 UTC (just a few minutes ago)

¢ Finish Time: Not yet completed

e Max Items: Up to 28,296 marketing leads

The job is actively running and collecting marketing professionals data. Since it just started a
few minutes ago, it's still within the normal 2-15 minute processing window.

Estimated completion: Should finish within the next 10-12 minutes.

Irecommend checking back in about 5-10 minutes. Would you like me to check the status
again in a bit, or is there anything else I can help you with while we wait?

Fig. 6. An example conversation between the user and Claude.

tasks, even hours later. This change streamlined the process and reduced work-
load and oversight. Thus, in complex projects involving multiple workflows, this
approach has the potential to significantly reduce confusion and the risk of error
while improving the overall user experience.

However, in some cases, such as when an unexpected error occurred in the
external platform, I still had to manually verify Google Sheets or Apify.

In general, my project shows that the integration of Claude with MCP can
achieve persistent context and operational awareness in real-world workflows.

User Interaction

5. Natural Language Interaction MCP-system: Claude provides context-aware
natural language responses and real-time task feedback directly within the chat
interface. Whenever I encountered confusion regarding the process, Claude ex-
plained it in the most understandable way.

This kind of communication allowed me to have more control over tasks and
helped me detect any problems during execution.

However, as mentioned, message limitations exist within Claude. This might
lead to interruptions in task completions and limited chat abilities.

Manual-Workflow: In contrast, the manual workflow required me to trigger
actions through the n8n interface. Moreover, I manually examined Google Sheets

16 Kocabiyik, S. (Selma)

to track progress. The system lacked any chatbot interface or real-time guidance,
requiring manual monitoring and intervention.

Survey on User Interface Preference To determine which user interface people
prefer, I conducted a short survey on Google Forms consisting of four questions.
The survey was sent to 30 participants in total: team members, other developers
in the field, and university students from different disciplines.

1. The first question asked whether the participants had a technical back-
ground. The goal was to see how non-technical users responded, since the
problem statement emphasized the importance of building a user-friendly
interface for non-tech users.

2. The second question asked whether the participants had experience using
workflow automation tools such as n8n, Zapier, or UIPath. This was intended
to reveal whether users without prior experience were more inclined to prefer
the chatbot interface over traditional workflow systems.

3. The third question presented screenshots of both interfaces. This was used
to determine which interface participants found more intuitive and easier to
use.

4. The last question asked which system made them feel more in control. This
highlighted which interface was better for user interaction and accessibility.

To help non-technical people understand the system better, I shared a video
along with the survey link which included both workflows in use. This helped
clarify the questions and make the answers more sensible and consistent.

Results The natural language user interface of Claude provides more acces-
sibility to the business process. Based on my observations, it enabled the task
initializations to be more convenient. In contrast, due to the lack of natural lan-
guage options in the manual system, the process was more prone to confusion,
especially for non-technical users, and even sometimes for technical users as well.

Survey
Survey Question Positive Response (%)
Participants with non-technical background 60.0%
No prior automation tool experience 63.3%
Found chatbot interface more intuitive 80.0%
Would feel more in control with chatbot interface 90.0%

Table 2. Summary of user interaction survey results.

According to the survey results (Table 2), most non-technical participants
claimed to feel more in control of the Claude UI. This indicates that the interface
is more accessible, as it appears to be simpler to operate.

Workflow Automation with MCP and Claude AI 17

Thus, the natural language interaction provided by the LLM interface is a
significant advantage, particularly for non-technical stakeholders. As long as op-
erational requirements are within the LLM usage limits, this approach provides
a more user-friendly and transparent experience than the manual workflow.

Scalability Although the project did not involve building a large number of
workflows, I designed and tested a system that can be expanded for future use.

6. Expansion Challenges and Re-usability Manual-Workflow: During the data
collection, I realized that extending a n8n workflow setup would require manually
creating new project files for each task. For example, adding more data scraping
sources, user notification features, or error-checking mechanisms. Each workflow
would have to be individually maintained and monitored.

If T wanted to build a system that scrapes data from multiple platforms (e.g.,
Twitter, LinkedIn, and company websites), the manual method would require
separate workflow files, repeated HTTP requests, and duplicated logic across
flows. Maintaining the consistency of the system and debugging would quickly
become difficult as the project grows.

MCP-system: In contrast, with MCP, LLM can reuse prompt templates.
Additionally, integrating new tools with minimal configuration due to the MCP
Server Trigger node (mentioned in the Implementation section) in n8n. Since
the system maintains shared context, there is no need to rebuild the logic from
scratch each time. This means, for instance, adding a new scraper only requires
connecting it to the MCP Server Trigger node. Consequently, it is unnecessary
to construct an entirely new project file for each data source.

Results Thus, in my experience, scalability is restricted in the manual n8n
workflow. The complexity of maintaining and expanding the system increases
with the development of new workflows. This leads the user to manually con-
figure, trigger, and monitor tasks. More development work is required for more
complex features, and this often results in fragmented project files or additional
APT calls. Thus, while the manual approach is manageable for a small number
of workflows, its complexity increases as the system expands.

In contrast, the MCP-based method overcomes these constraints using a stan-
dardized approach. As mentioned above, MCP allows workflows to share context
and reduces the total number of API calls within the systems. Consequently, it
has higher scalability which supports additional workflows and advanced coor-
dination with less development effort in the long run.

3.3 Conclusion

The integration of the Model Context Protocol (MCP) with Claude and n8n
made the system appear more scalable, accessible, context-aware, and user-
friendly. These conclusions are drawn from a data collection use case and the
sub-use cases.

18 Kocabiyik, S. (Selma)

By analyzing each of these components separately, the findings provide in-
sight into how MCP-based systems perform across multiple operational chal-
lenges.

Development Effort:

Singh et al. [1] and Krishnan [2] discuss that MCP integration requires a con-
figuration effort at first. Developers must understand client-server architectures,
dynamic tool discovery, and protocol handling.

Based on their work and my observations, the development time for building
the MCP-based system was clearly longer than that of the manual one.

Thus, the manual approach offers rapid setup for one-time tasks, but may
become inefficient and repetitive as the workflows expand. In contrast, the MCP
approach, despite its initial development effort, is potentially more maintainable
and extensible over time, particularly as workflows become more complex.

Context-awareness: The results directly reflect the Disconnected Model
Problem and its solution, as described in the literature (see Section 2.2). The
project demonstrates that persistent context and operational awareness can be
achieved in real-world n8n workflows by integrating Claude with MCP.

My qualitative results are directionally consistent with Krishnan’s quantita-
tive benchmarks, although I did not measure the same metrics. As he found,
83.7% improved long-term coherence and 76.8% for the precision of context re-
trieval in MCP systems.

Consequently, the findings support the effectiveness of the MCP system in
context awareness.

User-Interaction: As noted by Zhao et al. [3], LLMs act as effective user
interfaces, allowing users to interact with complex systems through natural lan-
guage. The project is a real-world example of this statement.

The results demonstrate that natural language communication allowed users
to trigger and monitor tasks more intuitively, especially for non-technical users.

The survey had a small sample size and subjective responses. However, it
offered observations on user preferences and supported the value of an LLM-
based interface for its accessibility and ease of use.

Scalability: As previously indicated in the literature section, MCP improves
the scalability and maintainability of software systems [1,2]. My observations on
the MCP system support this. In multistep workflows such as data collection,
Claude managed different tools while maintaining shared context and without
requiring repeated configuration.

These observations matched the results of the Krishnan scalability bench-
marks (Appendix A). The findings demonstrate the performance of MCP sys-
tems that gains in coordination, task allocation, and communication efficiency.

Although the initial setup took more effort, the MCP-based system turned
out to be easier to expand. Moreover, the observations for scalability demon-
strated that as more tools were connected, the system remained organized and
coherent.

In conclusion, this project demonstrated that MCP addressed many of the
limitations of manual workflow automation. Improved development efficiency,

Workflow Automation with MCP and Claude AI 19

memory handling, interaction, and long-term scalability, even within a limited
use case. The results demonstrated the efficiency of the MCP system and how
it effectively addressed the challenges encountered by CoreMagnet.

4 Discussion

4.1 Assumptions

CoreMagnet anticipated that the implementation of the MCP would solve prob-
lems in business workflows.

Based on research and internal feedback, the company assumed non-technical
users would prioritize a system with ease of use. The MCP-based interface was
intentionally designed to address this system complexity. So, the performing
business tasks become accessible to anyone.

During MCP configuration, we anticipated that users would not consistently
phrase their requests accurately to Claude. This led me to develop more detailed
prompt instructions. The duration of development was beyond my expectations,
mainly due to prompt sensitivity. Moreover, MCP was initially complex, not
only in implementation, but also in understanding its client-server architecture.

The evaluated use-case was built based on my experience with MCP, aiming
to demonstrate MCP’s effectiveness in addressing the main problem. Although
the evaluation was limited to a single use case, the workflow was designed to
incorporate multiple common automation tasks (e.g., tool triggering, data flow
monitoring, cross-step coordination). I believe the findings offer helpful sugges-
tions for similar multi-step business automations. However, more diverse use
cases would be needed to fully generalize these results.

In terms of alternative potential applications, the methodology or results
could differ. My method was straightforward and included a simple workflow. An
expanded workflow would require additional development effort, but may offer
superior scalability compared to systems without MCP. The studies completed
for this project validate the future capabilities of this Al system.

4.2 Limitations

Prompt Sensitivity With LLMs, prompt engineering is a constant challenge [4].
Therefore, further prompt issues may arise if the workflows are expanded. Future
work should explore prompt template libraries or structured input validation.
This would minimize unpredictable model outputs and the development effort.

Message Limitations Another limitation of the MCP system was Claude’s
token limitation. This caused extra prompt-engineering work in the small use-
case; so | expect larger workflows to hit the limit more often. Thus, scaling the
system would require more development effort.

20 Kocabiyik, S. (Selma)

Configuration of MCP The designed workflow automation can only be worked
on the local application of Claude. This means that each user must manually
configure the system in their environment, and no one else has access to this set-
up. This is a flawed solution, as it would need to be implemented individually on
every business computer. A solution could be a centralized or cloud deployment
model to reduce development effort.

Given the small scope of my integrated workflow, it might not be sufficient
to generalize that MCP-integrated systems would work better in large, complex
business tasks. There is a potential for new prompt or message limitations to
emerge as workflows become more complex.

4.3 Improvements

To address prompt sensitivity, shared and reusable prompt templates can be
created. These could speed up future integrations and reduce errors. To avoid
the need for individual MCP installations, a centralized deployment or a cloud-
based server should be considered.

In the literature, the limitations of traditional API-based systems are men-
tioned. In the evaluation part, I did not compare the traditional integration of
external API in an LLM so that I could compare the development effort of both
systems. A good example of external API integration is to connect the Apify
APT directly to an LLM. I believe that if more tests were performed that com-
pared MCP integration and API setup configurations, the results would be more
reliable. I was unable to implement a fully API-configured system due to its com-
plicated nature and the company requirements, which were mainly focused on
MCP integration.

Additionally, for the MCP-integrated system, expanded user studies or sur-
veys could be performed with more non-technical team members. This would
support more generalizable conclusions and future improvements.

4.4 Alternative Solutions

An alternative solution to MCP in terms of the project would be the integration
of a chatbot into the n8n workflow. An API call for an LLM could be made
within the workflow, rather than saving n8n workflows as external tools for
Claude. This approach may enable users to engage with the workflow via a
chatbot; however, it would remain within the n8n environment.

This method minimizes the development effort and avoids some of the initial
challenges related to the MCP setup. Furthermore, it has the potential to de-
crease the sensitivity of the prompt, as it is directly connected to the action nodes
in n8n. However, it would remain in the n8n environment and could potentially
present difficulties for non-technical users due to the user interface complexity.

4.5 Future Work

As Singh et al. state, MCP is designed to address limitations of traditional, frag-
mented API integrations. They describe MCP as a comprehensive solution that

Workflow Automation with MCP and Claude AI 21

fills the gap between static language models and external real-time resources [1].
Additionally, MCP has already started to be implemented across different Al
software platforms such as Manus, Azure, Google, and even ChatGPT.

MCP was originally designed to overcome API integration limitations and
to make software systems communicate with each other effectively. Therefore,
this technology might speed up future software systems and increase the task
performance of LLMs.

Although my project focused on a small automation system, the findings
highlight broader challenges and opportunities to deploy LLM-based automation
interfaces in business contexts.

CoreMagnet is currently focusing on optimizing the integration of MCP into
their extensive business workflows. My research serves as a key reference in this
effort.

In summary, this project not only confirms the advantages of MCP, but also
demonstrates their practical value in workflow automation. The system reduced
manual integration effort, improved user experience, and became more scalable
and context-aware. Despite the fact that the system requires improvements for
broad adoption, MCP-based automation offers the capacity to solve real-world
business problems.

5 Reflection

5.1 Planning and Time Management

I created a comprehensive planning for a three-month internship. The planning
was carried out in Excel. I implemented my weekly planning and followed it.
Furthermore, I adjusted the schedule whenever there were modifications to the
project. Ultimately, I made four versions of the planning with significant updates.

5.2 Handling Project Changes

During the internship, my planning had some adjustments due to changes in
tasks. Initially, we tried to work on the open-source GitHub repository. This
directory aimed to implement MCP and connect our environment to external
technologies. The OpenManus [19] repository is located on GitHub. However, it
took three weeks to recognize that it is unmanageable and extremely difficult to
handle.

Following a conversation with my supervisor, I indicated that it is very diffi-
cult to manage. They immediately assign me a new task. Consequently, I started
working on the MCP system within the n8n platform to develop comprehensive
automation systems that use Claude. This is due to the fact that my company
develops most of its workflows in n8n. From then on, it became clear that I am
responsible for working on MCP and integrating LLM into the system.

22 Kocabiyik, S. (Selma)

5.3 Collaboration and Working Relationships

My supervisor provided significant assistance in addressing the challenges that 1
faced. Each week he assigned me the task instructions. He consistently monitored
my progress and any difficulties that I encountered. I had three team members
working on the same project and most of the time we shared the tasks. Most of
the time, I waited for my team members to develop n8n workflows so that I could
implement MCP in the system. In particular, the team members were available
most of the time. I was able to communicate with them easily through calls or
in-person meetings whenever support was needed. We had weekly, sometimes
even twice a week, Google meetings. One of them did n8n workflows, I did
MCP integration, and the last one did both tasks: publishing the system and
presenting the results to the supervisor and customers. Since we worked together,
I just have to focus on completing the MCP part. During my journey, due to
MCP integrations, I also learned how to make n8n workflows and even managed
to do difficult API integrations. Team feedback helped me identify weaknesses
in my API setup approach, which I then corrected by restructuring my prompts
and error handling logic.

5.4 Work Methods and Evolution

I worked 8 hours a week officially; however, due to my slow learning pace, most of
the time I tried to understand the system and wanted to improve. Approximately
every week, 8 to 10 hours I worked on the projects. My team members were
full-time, so they were always available to help me. Furthermore, I appreciated
working on the project, thus I was not concerned about working an additional
2 or 3 hours. In general, I was satisfied with my working hours and methods. It
helped me develop professional discipline and gain valuable job experience.

However, I should have been more concerned about the way I conduct my
planning. CoreMagnet is a start-up, so the changes in the projects and dynamics
were very fast. Consequently, to keep up with their speed, I also had to make
continuous changes in my planning. Looking back, a more modular and adaptive
planning style would have allowed me to better manage the frequent changes
typical in startup environments. This could have reduced the need to work an
additional two hours a week, although it was not a major issue.

5.5 Key Learning and Developments

The internship was a true real-world experience that helped me grow in team-
work, communication, and project management. Working in a start-up team was
different from a group project at the university. In the team, no one was my age,
field or background. Team members were much more experienced in terms of Al
tools and project management. Initially, I was struggling with communication
and deadlines. However, after discussing my strengths with the team, I presented
what I was actually capable of and my supervisor assigned me the appropriate

Workflow Automation with MCP and Claude AI 23

tasks in the project. This helped reduce my stress and clearly showed me how
essential communication is in a professional setting.

In addition, I developed practical skills to use popular AI platforms and
tools. I gained practical experience in managing large language models (LLMs)
and understanding their limitations. Although I am always using GPT, this
was the first time I worked with an LLM in a production context. Integrating
external tools revealed prompt and system-level challenges that I had not en-
countered before. This taught me how to apply LLM-related concepts; such as
context management, system integration, and prompt engineering, in real-world
use cases.

In addition, I learned how to make API calls inside the n8n platform and
how to build real-world projects, such as lead generation workflows. Working
with data, scraping, storing, and even cleaning was part of my experiences.
Moreover, I improved my ability to work with external Al tools and integrate
them effectively. My integration of MCP allowed the system to support LLM-
driven automation with minimal user input, forming the core of the final product.
Consequently, I delivered a complete solution for a real-world business use case.

References

1. Singh, A., Ehtesham, A., Kumar, S., Talaei Khoei, T.: A Survey of the Model Con-
text Protocol (MCP): Standardizing Context to Enhance Large Language Models
(LLMs). Preprints.org (2025).

2. Krishnan, N.: Advancing Multi-Agent Systems Through Model Context Protocol:
Architecture, Implementation, and Applications. arXiv preprint arXiv:2504.21030
(2025).

3. Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B.,
Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li,
Y., Tang, X., Liu, Z., Liu, P., Nie, J.-Y., Wen, J.-R.: A Survey of Large Language
Models. arXiv preprint arXiv:2303.18223 (2023).

4. Chen, X., Gao, C., Chen, C., Zhang, G., Liu, Y.: An Empirical Study on Challenges
for LLM Application Developers. arXiv preprint arXiv:2408.05002 (2024).

5. Perron, B.E., Luan, H., Qi, Z., Victor, B.G., Goyal, K.: Demystifying Application
Programming Interfaces (APIs): Unlocking the Power of Large Language Mod-
els and Other Web-based AI Services in Social Work Research. arXiv preprint
arXiv:2410.20211 (2024).

6. Elsayed, M.: Enhancing Hosting Infrastructure Management with AI-Powered Au-
tomation (Bachelor’s thesis). Theseus (2024).

7. Banik, D., Pati, N., Sharma, A.: Systematic Exploration and In-Depth Analysis of
ChatGPT Architectures Progression. Artificial Intelligence Review (2024).

8. Endres, B.: Not a programmer? You can mobilize data from biodiversity informatics
APIs, too! ProQuest (2023).

9. Cheung, M.: A Reality Check of the Benefits of LLM in Business. Beta Labs, The
Lane Crawford Joyce Group, China. arXiv preprint arXiv:2406.10249 (2024).

10. Pozdniakov, S., Brazil, J., Abdi, S., Bakharia, A., Sadiq, S., Gasevi¢, D., Denny, P.,
Khosravi, H.: Large language models meet user interfaces: The case of provisioning
feedback. AI Open 5, 100153 (2024).

24 Kocabiyik, S. (Selma)

11. Anthropic: Model Context Protocol: Introduction (2025).
https://modelcontextprotocol.io/introduction

12. Anthropic: Model Context Protocol: Architecture Specification (March 26, 2025).
https://modelcontextprotocol.io/specification/2025-03-26 /architecture

13. Anthropic: =~ Model Context Protocol - News Release (2024).
https://www.anthropic.com/news/model-context-protocol

14. n8n.io: Workflow Automation for Technical People. https://n8n.io/

15. Leandro Calado Ferreira. n8n’s Native MCP Integration: Current Capabilities and
Future Potential. Medium (2024). https://leandrocaladoferreira.medium.com /n8ns-
native-mcp-integration-current-capabilities-and-future-potential-4a36ca30d879

16. CoreMagnet B2B. CoreMagnet Official Website. (2024).
https://www.coremagnetb2b.com

17. Claude Al Claude Official Website. (2024). https://claude.ai

18. Apify. Web Scraping and Automation Platform. (2024). https://apify.com

19. Foundation Agents. OpenManus. (2024). https://github.com/FoundationAgents/OpenManus

Appendix

A Experimental Benchmark Table from Krishnan

Workflow Automation with MCP and Claude Al 25
Category Metric Explanation MCP Baseline
Knowledge Cross-Domain Syn-|Stronger cross-domain|78.3% 61.5%
Integration |thesis reasoning.
Temporal Knowledge| Tracks evolving knowl-|{72.6% 58.4%
Management edge accurately.
Conflict Resolution |Resolves contradictions|68.9% 54.7%
using source metadata.
Knowledge Gap De-|Detects missing knowl-|{81.2% 63.8%
tection edge effectively.
Coordination |Communication Vol-|Efficient information ex-|47% less used |-
Efficiency ume change.
Task Allocation Op-|Better task-to-agent|12% off opti-|27%
timality matching. mal
Conflict Resolution|Faster local agent con-|{3.2x faster |-
Speed flict handling.
Scalability Handles more agents ef-|O(n log n) O(n?)
ficiently.
Context Re-|Long-Term Coher-|Maintains session conti-|83.7% 42.3%
tention ence nuity.
Context Retrieval|Recalls relevant past|76.8% 58.2%
Precision info.
Cross-Agent Transfer|Shares context across|79.4% 45.7%
agents.
Context Utilization |Boosts performance in|37.2% avg.|—
complex tasks. boost
Multi-Modal |Cross-Modal Reason-|Integrates modalities|71.3% 52.6%
Integration |ing well.
Modal Translation |Preserves meaning |82.4% 67.8%
across formats.
Modal Selection Chooses best output|78.9% 61.2%
channel.

Table 3. Experimental performance benchmarks from Krishnan [2].

26

Kocabiyik, S. (Selma)

B Survey Results on Workflow Interfaces

Question Option 1 Option 2

What is your background? |Technical (40.0%) |Non-technical
(60.0%)

Have you ever used workflow |Yes (36.7%) No (63.3%)

automation tools (e.g., n8n,
Zapier, UIPath)?

Which interface is more in-
tuitive for triggering/moni-
toring automation?

Manual n8n interface
(20.0%)

LLM/chatbot inter-
face (80.0%)

Which interface makes you
feel more in control for mon-
itoring progress?

Manual n8n interface

(10.0%)

LLM/chatbot inter-
face (90.0%)

Table 4. Survey responses on workflow interface preferences.

Workflow Automation with MCP and Claude AI 27

C Structured Prompt Instructions

 Behavjor Logic & Rules

1. @_ Interpret User Intent Carefully

If the user says:

“Scrape and check if it's in Google Sheets."

or

“Run it and show me the data”

-> Do not trigger both tools blindly.

2. @ First: Confirm Scraping Input

Before using Apify, ask the user to provide:

Industry or business type

Location

Optional filters (e.g., size, tags)

After receiving complete input, always ask:

“"Would you like me to start collecting this data now?”

Proceed only if the user says “yes” or clearly confirms.

3. & Wait for Apify Completion

After starting a job with Apify, wait for the job to reach status: READY.

Do not check Google Sheets or trigger another scrape while the job is still running.

4. @9 Only Use Google Sheets When Explicitly Asked

Do not trigger the Google Sheets tool unless the user says something like:

“"Check Google Sheets”

“Did it save?"”

“Can | see the results?”

® Avoid This Common Mistake

Example Input:

“"Scrape data and check if it's in Google Sheets.”

Do NOT:

Trigger ARify and Google Sheets back-to-back without waiting.

Assume an empty Google Sheet means the Apjfy job failed.

Retry the same Apjfy job multiple times.

Why?

ARify may still be running. Google Sheets may be empty because the data hasn’t arrived yet.
his causes redundant triggers, added costs, and failed tasks.

® Best Practice Summary

Always confirm scraping criteria + get user approval.

Wait for Apify to complete before any next steps.

Trigger Google Sheets only when asked.

Never loop workflows based on empty results alone.

Fig. 7. Prompt Instructions for MCP-system

28 Kocabiyik, S. (Selma)

D Code Snippets

MCP Server Trigger Node This configuration registers the workflow and
spreadsheet with the MCP Server Trigger node.

{
"connections": {
"Call n8n Workflow Tool": {
"ai_tool": [
[
{
"node": "MCP Server Trigger",
"type": "ai_tool",
"index": O
}
]
]
g
"Google Sheetsl": {
"ai_tool": [
[
{
"node": "MCP Server Trigger",
"type": "ai_tool",
"index": O
}
]
]
}
}
}

Listing 1.1. MCP Server Trigger node JSON configuration

Workflow Automation with MCP and Claude AI 29

Apify Scraping HTTP Request Node This HTTP request node sends a
scraping job to the Apify platform, using the provided API key and URL.

{

"name": "Collect lead datal",
"url": "https://api.apify.com/v2/acts/jljBuyyQakqrLiwae/
runs",

"method": "POST",

"jsonBody": {
"url": "https://app.apollo.io/#/people?...",
"totalRecords": 500,
"apifyKey": "{{$json[’apify_key’]1}}"

}

Listing 1.2. Apify scraping HTTP request node configuration

